www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abbildungen in euklidische VR
Abbildungen in euklidische VR < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen in euklidische VR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Mo 20.05.2013
Autor: petapahn

Aufgabe
Sei V= [mm] \IC [/mm] und f eine lineare Abbildung f: V --> V, [mm] f_{a}(x)=x*a [/mm] mit a [mm] \in \IC. [/mm] Betrachte nun den euklidischen VR (V, <,>) mit <,> als Standardskalarprodukt.
Berechne nun [mm] det(f_{a}). [/mm]

Hallo,
ich bräuchte Hilfe. Also die Funktion ist ja eindimensional, d.h die [mm] det(f_{a})= [/mm] x*a.
Aber wie ist das jetzt in diesem euklidischen VR?
Kann mir jemand helfen?
petapahn

        
Bezug
Abbildungen in euklidische VR: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mo 20.05.2013
Autor: angela.h.b.


> Sei V= [mm]\IC[/mm] und f eine lineare Abbildung f: V --> V,
> [mm]f_{a}(x)=x*a[/mm] mit a [mm]\in \IC.[/mm] Betrachte nun den euklidischen
> VR (V, <,>) mit <,> als Standardskalarprodukt.
> Berechne nun [mm]det(f_{a}).[/mm]
> Hallo,
> ich bräuchte Hilfe. Also die Funktion ist ja
> eindimensional,

Hallo,

Funktionen haben keine Dimensionen.

> d.h die [mm]det(f_{a})=[/mm] x*a.

Wie ist bei Dir "Determinante einer linearen Funktion" definiert?


> Aber wie ist das jetzt in diesem euklidischen VR?

Zunächst einmal mußt Du die Definition von "Determinante einer lin. Funktion" wissen.

Ein euklidischer VR ist eine VR über [mm] \IR. [/mm]
Welche Dimension hat der VR [mm] \IC [/mm] betrachtet als VR über [mm] \IR? [/mm]
Kannst Du eine Basis nennen?

LG Angela


> Kann mir jemand helfen?
> petapahn


Bezug
                
Bezug
Abbildungen in euklidische VR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Mo 20.05.2013
Autor: petapahn

Hi,
danke erstmal.

> Wie ist bei Dir "Determinante einer linearen Funktion" definiert?

Die Determinante einer lin. Funktion ist doch die Determinante der Darstellungsmatrix der lin. Funktion, d.h. man stellt die lin. Fkt. als A*x dar mit A als Darstellungsmatrix dar.

> Welche Dimension hat der VR $ [mm] \IC [/mm] $ betrachtet als VR über $ [mm] \IR? [/mm] $

2

> Kannst Du eine Basis nennen?

DIe beiden Einheitsvektoren e1 und e2 beispielweise.

Ok wenn ich jetzt diese Abbildung [mm] f_{a}=x*a [/mm] ansehe, habe ich als Ergebnis immer die Form [mm] \vektor{Re(x)*Re(a) - Im(x)*Im(a) \\ Re(x)*Im(a) + Im(x)* Re(a)}. [/mm] (Das ist ja die Multiplikation von komplexen Zahlen)
Also könnte ich eine Form bauen mit  [mm] \vektor{Re(x)*Re(a) - Im(x)*Im(a) \\ Re(x)*Im(a) + Im(x)* Re(a)} [/mm] = A*x. Damit wäre A= [mm] \pmat{ Re(a) & -Im(a) \\ Im(a) & Re(a) } [/mm] und somit det(A)= [mm] Re(a)^2 [/mm] + [mm] Im(a)^2. [/mm]
Aber ich hab iwie das Gefühl, dass ich immer von [mm] \IR^2 [/mm] ausgehe und nicht von diesem euklidischen VR mit dem Skalarprodukt.



Bezug
                        
Bezug
Abbildungen in euklidische VR: Antwort
Status: (Antwort) fertig Status 
Datum: 06:27 Di 21.05.2013
Autor: fred97


> Hi,
>  danke erstmal.
>  
> > Wie ist bei Dir "Determinante einer linearen Funktion"
> definiert?
>
> Die Determinante einer lin. Funktion ist doch die
> Determinante der Darstellungsmatrix der lin. Funktion, d.h.
> man stellt die lin. Fkt. als A*x dar mit A als
> Darstellungsmatrix dar.
>  > Welche Dimension hat der VR [mm]\IC[/mm] betrachtet als VR über

> [mm]\IR?[/mm]
>  2
>  > Kannst Du eine Basis nennen?

> DIe beiden Einheitsvektoren e1 und e2 beispielweise.
>  
> Ok wenn ich jetzt diese Abbildung [mm]f_{a}=x*a[/mm] ansehe, habe
> ich als Ergebnis immer die Form [mm]\vektor{Re(x)*Re(a) - Im(x)*Im(a) \\ Re(x)*Im(a) + Im(x)* Re(a)}.[/mm]
> (Das ist ja die Multiplikation von komplexen Zahlen)
>  Also könnte ich eine Form bauen mit  [mm]\vektor{Re(x)*Re(a) - Im(x)*Im(a) \\ Re(x)*Im(a) + Im(x)* Re(a)}[/mm]
> = A*x. Damit wäre A= [mm]\pmat{ Re(a) & -Im(a) \\ Im(a) & Re(a) }[/mm]
> und somit det(A)= [mm]Re(a)^2[/mm] + [mm]Im(a)^2.[/mm]
>  Aber ich hab iwie das Gefühl, dass ich immer von [mm]\IR^2[/mm]
> ausgehe und nicht von diesem euklidischen VR mit dem
> Skalarprodukt.
>  
>  


Alles bestens. Eine Vereinfachung kannst Du noch anbringen:

det(A)= [mm]Re(a)^2[/mm] + [mm]Im(a)^2=|a|^2[/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]