www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Abbildung zw. Faktorräumen
Abbildung zw. Faktorräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung zw. Faktorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Di 16.04.2019
Autor: Antimaterie

Aufgabe
Sei V ein K-Vektorraum und seien [mm] W_{1};W_{2} [/mm] K-Untervektorräume von V , so dass [mm] W_{1}\subset W_{2}. [/mm]

a) Sei v [mm] \in [/mm] V. Beweisen Sie dass die Abbildung
   [mm] \tau_{W_{1},W_{2}}: V/W_{1}\to V/W_{2} [/mm] ; [mm] v+W_{1}\mapsto v+W_{2} [/mm]
   einen surjektiven K-Homomorphismus definiert.

b) Beweisen Sie dass [mm] \tau_{W_{1},W_{2}} [/mm] einen K-Isomorphismus
   [mm] \overline{\tau}_{W_{1},W_{2}}: (V/W_{1})/({W_{2}/W_{1}})\to V/W_{2} [/mm]
   induziert.




Guten Tag,
ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich wollte nur in Erfahrung bringen, ob der folgende Ansatz mich zu einer Lösung der Fragestellungen a) und b) bringt.
Zunächst ein paar Aussagen, die ich im Ansatz benutzen möchte. Diese wurden bereits bewiesen.

__________

A1)
Sei V ein K-Vektorraum und W ein Untervektorraum von V.
Dann ist V/W ein K-Vektorraum (mit [mm] 0_{V/W}=W). [/mm]

A2)
Seien V und W wie in A1.
Die sog. Quotientenabbildung
[mm] \pi: [/mm] V [mm] \to [/mm] V/W ; [mm] v\mapsto [/mm] v+W
ist ein surjektiver K-Homomorphismus mit [mm] ker(\pi)=W. [/mm]

A3)
Seien V und Z K-Vektorräume. Sei v [mm] \in [/mm] V. Sei f: V [mm] \to [/mm] Z ein K-Homomorphismus.
Es existiert ein K-Homomorphismus
[mm] \overline{f}: V/ker(f)\to [/mm] Z
sodass [mm] f(v)=\overline{f}(\pi(v)) [/mm] gilt.
[mm] \overline{f} [/mm] ist für jede Abbildung f injektiv und genau dann surjektiv, wenn f surjektiv ist. [mm] \overline{f} [/mm] ist in diesem Fall ein Isomorphismus.

A4)
Für [mm] \pi [/mm] aus A2 gilt wegen [mm] W=ker(\pi), [/mm] dass [mm] \pi [/mm] eine solche Abbildung f wie in A3 ist. A3 gilt also auch für [mm] \pi. [/mm]  

__________

Das Gesamtkonzept meines Beweises:
Unter gewissen Mengengleichheiten stimmt a) und a) [mm] \implies [/mm] b).

__________

Um was für Gleichheiten geht es?


Zu a)
Da [mm] V/W_{1} [/mm] nach A1) ein Vektorraum ist, definiere ich mir [mm] V':=V/W_{1}. [/mm]
Somit haben wir die Abbildung
[mm] \tau_{W_{1},W_{2}}: V'\to V/W_{2} [/mm] ; [mm] v+W_{1}\mapsto v+W_{2} [/mm]

Die Abbildung [mm] \tau_{W_{1},W_{2}} [/mm] sieht mir dann verdächtig nach [mm] \pi [/mm] aus A2 aus. Wäre [mm] \tau_{W_{1},W_{2}} [/mm] also eine solche Quotientenabbildung, so würde a) direkt aus A2 folgen.
[mm] \tau_{W_{1},W_{2}} [/mm] wäre eine solche Abbildung, wenn [mm] \tau_{W_{1},W_{2}} [/mm] in die Menge [mm] V'/W_{2} [/mm] abbilden würde.
[mm] \tau_{W_{1},W_{2}} [/mm] bildet jedoch in die Menge [mm] V/W_{2} [/mm] ab.
Wäre nun praktischerweise [mm] V'/W_{2}=V/W_{2}, [/mm] also [mm] (V/W_{1})/W_{2}=V/W_{2}, [/mm] dann wäre [mm] \tau_{W_{1},W_{2}} [/mm] ja genau die Abbildung aus A2 mit den gewünschten Eigenschaften von a) und die Aussage wäre bewiesen.



Zu b)
Bleiben wir bei meiner Idee, dass [mm] \tau_{W_{1},W_{2}} [/mm] die Quotientenabbildung aus A2 ist. Hier wäre dann [mm] Z:=V/W_{2}. [/mm]
Dann gilt A3 nach A4 für [mm] \tau_{W_{1},W_{2}}. [/mm] Also gibt es einen K-Homomorphismus
[mm] \xi [/mm] : [mm] V'/\ker(\tau_{W_{1},W_{2}})\to V/W_{2} [/mm]
der nach A3 bijektiv ist, weil [mm] \tau_{W_{1},W_{2}} [/mm] nach a) surjektiv ist.
Das wiederum schaut mir schon fast nach dem K-Homomorphismus [mm] \overline{\tau}_{W_{1},W_{2}} [/mm] aus, der von [mm] \tau_{W_{1},W_{2}} [/mm] induziert werden soll.
Wenn jetzt praktischerweise [mm] W_{2}/W_{1}=ker(\tau_{W_{1},W_{2}}) [/mm] wäre, dann wäre ja der von b) geforderte K-Homomorphismus
[mm] \overline{\tau}_{W_{1},W_{2}} [/mm] : [mm] V'/(W_{2}/W_{1})\to V/W_{2} [/mm]
wegen der Gleichheit von [mm] ker(\tau) [/mm] und [mm] W_{2}/W_{1} [/mm] gleich dem K-Homomorphismus [mm] \xi. [/mm] Dieser erfüllt die Eigenschaften, die in b) gefordert sind.

__________

Was also zu tun ist:
Für a) Zeige [mm] (V/W_{1})/W_{2}=V'/W_{2}=V/W_{2}. [/mm]
Für b) Zeige [mm] W_{2}/W_{1}=ker(\tau_{W_{1},W_{2}}). [/mm]

Dann stimmt a) und [mm] a)\implies [/mm] b).

__________

Ist da irgendein Denkfehler drin?
Ob diese Gleichheiten stimmen, ist natürlich die andere Frage; ich wollte nur wissen, ob da nicht ein genereller Logikfehler unterliegt, sodass ich mir das Nachweisen der Gleichheiten auch direkt sparen kann.
Die Surjektivität von [mm] \tau_{W_{1},W_{2}} [/mm] in a) habe ich abseits dieser Überlegungen bereits gezeigt, der Rest von a) ginge sicher auch 'von Hand'. Ich stelle mir aber vor, dass b) dann etwas eklig wird, weswegen ich a) und b) lieber über den Weg oben zeigen würde.



EDIT: Ich hab's raus. Es läuft genau so ab, wie es unter 'Was also zu tun ist' geschildert ist.

        
Bezug
Abbildung zw. Faktorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Di 16.04.2019
Autor: ChopSuey

Moin,

bei a) ist die Rede von [mm] $\IK$-Homomorphismus. [/mm] Ist hier nicht Vektorraumhomomorphismus (= lineare Abbildung) gemeint? Wie habt ihr [mm] $\IK$-Homomorphismen [/mm] definiert?

Falls ich recht haben sollte, so zeige:

1) [mm] $\tau$ [/mm] ist eine lineare Abbildung und 2) [mm] $\tau$ [/mm] ist surjektiv.

Zum ersten:

Ist $U$ ein UVR von $V$, $v,w [mm] \in [/mm] V$ und [mm] $\lambda \in \IK$ [/mm] so sind Addition und Skalarmultiplikation auf $V/U$ erklärt durch

$$ (v+U)+(w+U) = (v+w) + U $$ und $$ [mm] \lambda(v+U) [/mm] = [mm] \lambda [/mm] v + U $$

Seien $ [mm] v_1,v_2 \in [/mm] V $. Für [mm] $\tau(v+W_1) [/mm] = v + [mm] W_2$ [/mm] gilt dann [mm] $$\tau((v_1+W_1)+(v_2+W_1)) [/mm] = [mm] \tau((v_1+v_2)+W_1) [/mm] = [mm] (v_1+v_2)+W_2 [/mm] = [mm] (v_1+W_2)+(v_2+W_2) [/mm] = [mm] \tau(v_1+W_1)+\tau(v_2+W_1) [/mm] $$

Sei $v [mm] \in [/mm] V$ und [mm] $\lambda \in \IK$. [/mm] Für [mm] $\tau$ [/mm] gilt dann

$$ [mm] \tau(\lambda(v+W_1)) [/mm] = [mm] \tau(\lambda [/mm] v+ [mm] W_1) [/mm] = [mm] \lambda [/mm] v + [mm] W_2 [/mm] = [mm] \lambda(v+W_2) [/mm] = [mm] \lambda\tau(v+W_1)$$ [/mm]

also ist [mm] $\tau$ [/mm] ein Vektorraumhomomorphismus.

[mm] $\tau$ [/mm] ist surjektiv, denn

$$ [mm] \operatorname{im} (\tau) [/mm] = [mm] \{\tau(v+W_1) \mid v \in V\} [/mm] = [mm] \{v+W_2 \mid v \in V\} [/mm] = [mm] V/W_2$$ [/mm]

zur b) hab ich mir noch nichts überlegt. Daher lass ich mal offen.

LG,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]