www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Abbildung von M nach N
Abbildung von M nach N < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung von M nach N: Idee
Status: (Frage) überfällig Status 
Datum: 18:10 Di 09.11.2010
Autor: nhard

Aufgabe
Welche der folgenden "Zuordnungen" F:M [mm] \rightarrow [/mm] N legen eine Abbildung von M nach N fest?

Seien M und N durch (i), (ii) oder (iii) gegeben und sei [mm]F:M \rightarrow N [/mm] in allen drei Fällen definiert durch [mm]x \rightarrow F(x) := y[/mm], wobei [mm]y \in N [/mm] Lösung der Gleichung [mm]\(y^{2}=x [/mm] sei.

(i) [mm] M:=\IR^{+} [/mm] und [mm] N:=\IR^{+} [/mm]
(ii) [mm] M:=\IR [/mm] und [mm] N:=\IR^{+} [/mm]
(iii) [mm] M:=\IR^{+} [/mm] und [mm] N:=\IR [/mm]


Zur Lösung habe ich erstmal für jede "Zuordnung" die formale Schreibweise (hoffentlich richtig?) aufgestellt:

zu i):

[mm] F:\IR^{+} \rightarrow \IR^{+}\quad \(x \rightarrow \(F(x):= \pm \wurzel{x} [/mm]

zu ii):
[mm] F:\IR \rightarrow \IR^{+}\quad \(x \rightarrow \(F(x):=\wurzel{x} [/mm]

zu iii):
[mm] F:\IR^{+} \rightarrow \IR\quad \(x \rightarrow \(F(x):=\wurzel{x} [/mm]


Meine Ausführungen wären dann zu:

i) Diese Zuordnung stellt keine Abbildung dar, denn es gilt nicht:

[mm] \forall x\in M\ :\ \exists ! y\in N\ mit\ (x,y)\in F [/mm]

Das begründe ich mit [mm]y^{2}=x \rightarrow y=\pm \wurzel {x} [/mm]. Die zeigt ja, dass für ein $x$ nicht genau ein, sondern in diesem Fall genau zwei $F(x)$ zugeordnet werden.

Sollte ich hier begründen warum " [mm] \pm [/mm] " vor der Wurzel steht? Wüsste nicht genau wie ich das formulieren sollte..

Zu (ii):
Diese Zuordnung stellt eine Abbildung da, denn für [mm]\forall x\in M[/mm] kann genau ein [mm]y\in N[/mm] zugeordnet werden.

Sollte ich hier ausführen, wie ich auf diese Aussage komme?

zu (iii):
Auch diese Zuordnung stellt eine Abbildung dar, denn [mm]\IR^{+} \subset \IR[/mm] und [mm]F(x)[/mm] für ein [mm]x\in \IR^{+}[/mm] wird immer ein Element aus [mm] \IR^{+} [/mm] sein. Daraus folgt: [mm] $F(x)\in \IR$ [/mm]

Sollte ich auch hier begründen WARUM F(x) immer Element von [mm] \IR^{+} [/mm] ist?


Sind ja eigentlich recht wesentliche Dinge, die ich hier nicht weiter beschreibe, oder? Aber weiß nicht wie ich so "Details" noch formulieren sollte..

Aber stimmt die "Lösung" so weit? Auch vom Formalen her?

Lieben Dank für eure Hilfe!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildung von M nach N: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 11.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]