www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abbildung injektiv
Abbildung injektiv < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Di 28.04.2009
Autor: D-C

Aufgabe
Für zwei Mengen A und B bezeichnet M(A,B) die Menge aller Abbildungen von A nach B.

Sei f: X->Y eine Abbildung. Zeigen Sie:

Falls f injektiv ist, so ist für jede Menge Z die Abbildung

M(Z,X) -> M(Z,Y) , s -> f [mm] \circ [/mm] s injektiv.

Hallo,

ich habe irgendwie etwas Probleme mit dieser Aufgabe. Wenn ich es richtig sehe, hat man ja drei Mengen X,Y,Z !? Gehen die Abbildungen dann einmal  von s: Z->Y , sowie einmal f: Z->X ?  Aber was ist dann f [mm] \circ [/mm] s ? Die Abbildung von X nach Y ?

Bisher kannte ich diese Aufgaben nur, wenn die Abbildungen in "eine" Richtung gingen, also z.B. von f: X->Y und dann von s: Y->Z , da hab ich den Beweis für s [mm] \circ [/mm] f auch hinbekommen, aber wie geht man hier vor, oder habe ich die Aufgabe einfach nur falsch verstanden?

Gruß

D-C

        
Bezug
Abbildung injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Di 28.04.2009
Autor: djmatey


> Für zwei Mengen A und B bezeichnet M(A,B) die Menge aller
> Abbildungen von A nach B.
>
> Sei f: X->Y eine Abbildung. Zeigen Sie:
>  
> Falls f injektiv ist, so ist für jede Menge Z die
> Abbildung
>  
> M(Z,X) -> M(Z,Y) , s -> f [mm]\circ[/mm] s injektiv.
>  Hallo,
>  
> ich habe irgendwie etwas Probleme mit dieser Aufgabe. Wenn
> ich es richtig sehe, hat man ja drei Mengen X,Y,Z !?

Richtig.

> Gehen
> die Abbildungen dann einmal  von s: Z->Y , sowie einmal f:
> Z->X ?  Aber was ist dann f [mm]\circ[/mm] s ? Die Abbildung von X
> nach Y ?

Nein, es gilt

f: X [mm] \to [/mm] Y
s: Z [mm] \to [/mm] X
f [mm] \circ [/mm] s: Z [mm] \to [/mm] Y

Du betrachtest eine Abbildung (nennen wir sie g), die eine zweite Abbildung (s) auf eine dritte abbildet (f [mm] \circ [/mm] s), d.h.

g(s) = f [mm] \circ [/mm] s


>  
> Bisher kannte ich diese Aufgaben nur, wenn die Abbildungen
> in "eine" Richtung gingen, also z.B. von f: X->Y und dann
> von s: Y->Z , da hab ich den Beweis für s [mm]\circ[/mm] f auch
> hinbekommen, aber wie geht man hier vor, oder habe ich die
> Aufgabe einfach nur falsch verstanden?

Du musst zeigen, dass g für beliebiges Z injektiv ist. Gib Z beliebig vor, mach dir klar, von wo nach wo die einzelnen Abbildungen gehen und benutze die Injektivität von f.

>  
> Gruß
>  
> D-C


LG djmatey


Bezug
                
Bezug
Abbildung injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 28.04.2009
Autor: D-C

Hallo,

ich hab mir das erstmal zur Veranschaulichung aufgemalt. Nun hab ich mal beispielhaft die Mengen mit Elementen versehen. f soll ja injektiv sein, also dürften in X ja nicht mehr Elemente sein, als in Y, da ja sonst 2 Elemente auf eins "geschickt" werden.  
Aber was passiert, wenn ich in Z z.b. zwei Elemente habe und in Y nur eins, dann wäre f [mm] \circ [/mm] s doch auch nicht mehr injektiv, oder? Das wäre dann doch schonmal ein Gegenbeispiel dafür, dass die Abbildung in bestimmten Fällen nicht injektiv sein kann !?

Gruß

D-C

Bezug
                        
Bezug
Abbildung injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Mi 29.04.2009
Autor: angela.h.b.


> Hallo,
>  
> ich hab mir das erstmal zur Veranschaulichung aufgemalt.
> Nun hab ich mal beispielhaft die Mengen mit Elementen
> versehen. f soll ja injektiv sein, also dürften in X ja
> nicht mehr Elemente sein, als in Y, da ja sonst 2 Elemente
> auf eins "geschickt" werden.  
> Aber was passiert, wenn ich in Z z.b. zwei Elemente habe
> und in Y nur eins, dann wäre f [mm]\circ[/mm] s doch auch nicht mehr
> injektiv, oder? Das wäre dann doch schonmal ein
> Gegenbeispiel dafür, dass die Abbildung in bestimmten
> Fällen nicht injektiv sein kann !?

Hallo,

es geht nicht darum, ob die Abbildung f [mm] \circ [/mm] s in jedem Falle injektiv ist - sie ist es nicht.

Es geht darum, daß  die Abbildung

[mm] A_f:M(Z,X) [/mm] -> M(Z,Y)

mit

[mm] A_f(s):=f \circ [/mm] s

injektiv ist für jedes Z,

daß  also aus [mm] A_f(s_1)=A_f(s_2) [/mm] immer folgt: [mm] s_1=s_2. [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]