www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abbildung ev
Abbildung ev < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung ev: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:25 Sa 17.11.2007
Autor: Knoepfchen

Aufgabe
Es sei V ein IK-VR.  Jedes v [mm] \in [/mm] V definiert eine Abbilung [mm] ev_v: [/mm] V* ->IK durch [mm] ev_v (\phi):=\phi(v). [/mm] Zeigen Sie:
a) [mm] ev_v: [/mm] V*->IK ist für jedes v [mm] \in [/mm] V linear. (also [mm] ev_v \in [/mm] V**)
b)Die Abbildung ev : V->V**, v [mm] \mapsto ev_v [/mm] ist linear.
c)Kern (ev) = {0}
d) ev ist injektiv.
e) Ist V endlich-dimensional, so ist ev ein Isomorphismus.

Hallo zusammen,
kann mir vielleicht jemand bei der Aufgabe helfen? Was ist V**? Ich weiß gar nicht wie ich anfangen soll...
Gruß Knöpfchen

        
Bezug
Abbildung ev: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Sa 17.11.2007
Autor: angela.h.b.


> Es sei V ein IK-VR.  Jedes v [mm]\in[/mm] V definiert eine Abbilung
> [mm]ev_v:[/mm] V* ->IK durch [mm]ev_v (\phi):=\phi(v).[/mm] Zeigen Sie:
>  a) [mm]ev_v:[/mm] V*->IK ist für jedes v [mm]\in[/mm] V linear. (also [mm]ev_v \in[/mm]
> V**)
>  b)Die Abbildung ev : V->V**, v [mm]\mapsto ev_v[/mm] ist linear.
>  c)Kern (ev) = {0}
>  d) ev ist injektiv.
>  e) Ist V endlich-dimensional, so ist ev ein
> Isomorphismus.
>  Hallo zusammen,
>  kann mir vielleicht jemand bei der Aufgabe helfen? Was ist
> V**? Ich weiß gar nicht wie ich anfangen soll...

Hallo,

bevor Du Dir den Kopf über V** zerbrichst, solltest Du Dir erstmal klarmachen, was V* ist.

V* ist die Menge aller Linearformen, aller linearen Abbildungen v. V [mm] \to [/mm] K.
Daß V* ein VR ist, wurde in der Vorlesung gezeigt. Er heißt der "Dualraum zu V".

Auch, wenn ich mich wiederhole: die Elemente v. V* sind Homomorphismen v. V nach K.

In Deiner Aufgabe wird nun für jedes [mm] v\in [/mm] V  eine  Abbildung [mm] ev_v [/mm] definiert.

Was tut diese Abbildung? Sie ordnet jedem [mm] \phi \in [/mm] V*, also jeder Linearform auf V, den Wert von [mm] \phi [/mm] an der Stelle v zu:

> [mm] ev_v:[/mm] [/mm] V* ->IK durch [mm][mm] ev_v (\phi):=\phi(v) [/mm]

In Aufgabe a) sollst Du nun zeigen, daß die Abb [mm] ev_v [/mm]  linear sind.
Wenn sie linear sind, bedeutet das: wir haben es hier mit Homomorphismen v. V* nach K zu tun, also mit Elementen aus (V*)*=:V**.

Bevor Du blindlings irgendetwas anfängst, um die Linearität zu zeigen, meditiere zunächst darüber, welches die Elemente sind, auf die die Abb [mm] ev_v [/mm]  angewandt wird.

Ich denke, b) können wir getrost so lange aufschieben, bis a) steht.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]