www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abb., Mengen, Teilmengen
Abb., Mengen, Teilmengen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abb., Mengen, Teilmengen: Ansätze zu i), ii)
Status: (Frage) beantwortet Status 
Datum: 16:26 So 04.11.2018
Autor: darko90

Aufgabe
Gegeben seien zwei Mengen A und B, sowie eine Abbildung f : A [mm] \to [/mm] B.
Zeigen Sie:
(i) Sind M und N zwei Teilmengen von A, so gilt f(M [mm] \cup [/mm] N) = f(M) [mm] \cup [/mm] f(N), f(M [mm] \cap [/mm] N) [mm] \subseteq [/mm] f(M) [mm] \cap [/mm] f(N) und M [mm] \subseteq [/mm] f^-1(f(M)). Zeigen Sie anhand von Beispielen, dass in den letzten beiden Fällen die Inklusionen echt sein können, aber nicht müssen.

(ii) Sind M und N zwei Teilmengen von B, so gilt stets f^-1(M [mm] \cup [/mm] N) = f^-1(M) [mm] \cup [/mm] f^-1(N),
f^-1(M [mm] \cap [/mm] N) = f^-1(M) [mm] \cap [/mm] f^-1(N) und f(f^-1(M)) [mm] \subseteq [/mm] M. Wann gilt im letzten Fall Gleichheit?

Guten Tag liebe Community,

ich habe seit heute folgendes Problem bei der Lösung dieser zwei Aufgaben. Ich habe im Vorlesungsskript und im Internet versucht, Ideen und Ansätze zu finden, aber leider helfen mir die Informationen eher weniger. Daher würde es mich sehr freuen, wenn jemand mir helfen könnte. PS: Dies ist mein erster Beitrag im Forum!

Mit freundlichen Grüßen
darko90

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abb., Mengen, Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 So 04.11.2018
Autor: angela.h.b.


> Gegeben seien zwei Mengen A und B, sowie eine Abbildung f :
> A [mm]\to[/mm] B.
> Zeigen Sie:
> (i) Sind M und N zwei Teilmengen von A, so gilt f(M [mm]\cup[/mm] N) = f(M) [mm]\cup[/mm] f(N),

Hallo,

[willkommenmr].

Wenn Du die Gleichheit zweier Mengen zeigen möchtest, mußt Du zeigen, daß jede Teilmenge der anderen ist.

Hier ist also zu zeigen:

1. [mm] f(M\cup N)\subseteq f(M)\cup [/mm] f(N)
2. [mm] f(M)\cup f(N)\subseteq f(M\cup [/mm] N)

Nun mußt Du mal im Skript schauen, wie "Teilmenge" erklärt ist: jedes Element der einen Menge liegt auch in der anderen.

Um 1. zu zeigen, mußt Du also zeigen, daß jedes Element aus [mm] f(M\cup [/mm] N) auch in [mm] f(M)\cup [/mm] f(N) ist.

Los geht es:

Sei [mm] y\in f(M\cup [/mm] N).

(Unser Ziel ist zu zeigen, daß y auch in [mm] f(M)\cup [/mm] f(N)  ist)

Dann gibt es ein Element [mm] x\in M\cup [/mm] N so, daß y=f(x). (Def. des Bildes)

Also gibt es ein Element [mm] x\in [/mm] M oder [mm] x\in [/mm] M mit f(x)=y. (Def. der Vereinigung)

Also gibt es ein [mm] x\in [/mm] M mit f(x)=y oder ein [mm] x\in [/mm] N mit f(x)=y (Logik)

==> [mm] y\in [/mm] f(M) oder [mm] y\in [/mm] f(N) (Def. des Bildes)

==> [mm] y\in f(M)\cup [/mm] f(N) (def. der Vereinigung)

Damit ist gezeigt

[mm] f(M\cup N)\subseteq f(M)\cup [/mm] f(N).


Vllt versuchst Du die Rückrichtung mal entsprechend.



Um die anderen Teilaufgaben zu bewältigen, könntest Du ja schonmal notieren, was zu zeigen ist - und vllt erste Versuche machen.

LG Angela



 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]