www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - <==> ?
<==> ? < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

<==> ?: Frage
Status: (Frage) beantwortet Status 
Datum: 16:35 So 13.02.2005
Autor: Andre85

Hi, ich hab nur ne kleine Frage und
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
:

Was ist die definition von [mm] \gdw [/mm]?
Und wie muss ich damit in einer Formel umgehen?

( Die Formel lautet: [mm]((a \le b ) \wedge (-a \le b )) \gdw |a| \le b [/mm] )


        
Bezug
<==> ?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 So 13.02.2005
Autor: Mukkular

Formel lautet:  ((a [mm] \le [/mm] b ) [mm] \wedge [/mm] (-a [mm] \le [/mm] b )) [mm] \gdw [/mm] |a| [mm] \le [/mm] b  )

Bedeutet: Wenn (a [mm] \le [/mm] b) und (-a [mm] \le [/mm] b )) dann folgt daraus |a| [mm] \le [/mm] b  

also : Wenn (a [mm] \le [/mm] b) und (-a [mm] \le [/mm] b ) [mm] \Rightarrow [/mm] |a| [mm] \le [/mm] b

und umgekehrt gilt auch:

wenn |a| [mm] \le [/mm] b   dann folgt daraus (a [mm] \le [/mm] b) und (-a [mm] \le [/mm] b )

also: wenn |a| [mm] \le [/mm] b   [mm] \Rightarrow [/mm] (a [mm] \le [/mm] b) und (-a [mm] \le [/mm] b )

man sagt für   [mm] \gdw [/mm] auch "genau dann, wenn" oder [mm] \Rightarrow [/mm] und [mm] \Leftarrow [/mm]

Übersetzt heisst deine Formel also nichts anderes als:
(a kleiner oder gleich b) und (-a kleiner oder gleich b) gilt genau dann, wenn der (betrag von a kleiner oder gleich b) ist

ich hoffe ich konnte helfen
(übernehme aber keine Gewähr)

Bezug
                
Bezug
<==> ?: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 So 13.02.2005
Autor: Andre85

Danke für die schnelle und ausführliche antwort, hat mir auf jedenfall weitergeholfen!!

Bezug
        
Bezug
<==> ?: Definition von <==>
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 So 13.02.2005
Autor: Marcel

Hallo Andre85!

[willkommenmr]!!

"Definition" von [mm] $\gdw$: [/mm]
Sind $ A $ und $ B $ Aussagen, so heißt $ A $ äquivalent zu $ B $ (im Zeichen [mm] A \gdw B [/mm]), falls aus der Gültigkeit von $ A $ die Gültigkeit von $ B $ folgt (d.h. [mm] A \Rightarrow B [/mm]) und falls aus der Gültigkeit von $ B $ die Gültigkeit von $ A $ folgt (d.h. [mm] B \Rightarrow A [/mm]).

Siehe auch: []http://de.wikipedia.org/wiki/Aussagenlogik#Gleichwertige_Aussagen_-_.C3.84quivalenz

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]