www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - 3 Unbekannte in e-Funktion
3 Unbekannte in e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3 Unbekannte in e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Do 01.11.2007
Autor: Grendel

Aufgabe
Zu einer Exponentialfunktion der Form f(x) = a * e^(bx) + c lieft folgende Wertetabelle vor:

x   | y
---------
-2  |12,9
0   | 8
2   | 4,7
4   | 2,5
6   | 1
8   | 0,01
10  |-0,6
12  | 1,1

a) Berechnen Sie die Werte von a, b und c! (Gerundetes Ergebnis für weitere Aufgabenteile: f(x) = 10e^(-0,2x)-2)

...

Ich habe diese Frage in keinem andren Forum gestellt.

Ich finde nicht den richtigen Weg, um an die Lösung zu kommen. Hier ist mein Lösungsversuch:

Ich nehme mir einfach drei Werte auf der Wertetabelle und setze sie ein.

8 = a * e^(b*0) + c
8 = a + c

1 = a * e^(6b) + c

2,5 = a * e^(4b) + c

1   = a * e^(6b) + c
2,5 = a * e^(4b) + c
--------------------

0,4 = [mm] \bruch{e^{(6b)} + c}{e^{(4b)} + c} [/mm]

Wenn ich das c irgendwie wegbekäme, würde ich dann auch ohne Probleme an b kommen, aber mir fällt kein Weg dafür ein.

        
Bezug
3 Unbekannte in e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Do 01.11.2007
Autor: Event_Horizon

Hallo!

Du hast doch noch so viel mehr Werte, die du in die Ausgangsgleichung einsetzen kannst. Die könntest du nach c umformen und einsetzen.


Bzw, du kannst das c von Anfang an los werden:

Du hast bereits drei Gleichungen hingeschrieben. Ziehe die eine von den anderen beiden ab, dann ist das c weg. Teile die anderen beiden durcheinander, und das a ist weg, du hast dann sowas ähnliches wie jetzt da stehen, blos ohne c.

Bezug
                
Bezug
3 Unbekannte in e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Do 01.11.2007
Autor: Grendel

Ok, ich habe jetzt nochmal Werte genommen und gerechnet.

  1 = a * e^(6b) + c
2,5 = a * e^(4b) + c
4,7 = a * e^(2b) + c

Dann, um c loszuwerden, habe ich die erste von den beiden anderen abgezogen. Die Ergebnisse sind dann:

1,5 = a * e^(4b) - a * e^(6b)
3,7 = a * e^(2b) - a * e^(6b)

Wenn ich jetzt die beiden teile kommt folgendes raus:

[mm] \bruch{15}{7} [/mm] = [mm] \bruch{e^{(4b)} - e^{6b}}{e^{(2b)} - e^{(6b)}} [/mm]

das entspricht

[mm] \bruch{15}{7} [/mm] = [mm] \bruch{e^{(4b)} + 1}{e^{(2b)} + 1} [/mm]

aber was jetzt??


Bezug
                        
Bezug
3 Unbekannte in e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Do 01.11.2007
Autor: Event_Horizon

Hallo!

Das sieht schon gut aus!

Jetzt benötigst du eine Substitution. Setze [mm] z=e^b [/mm]  oder besser gleich [mm] z=e^{2b} [/mm] und denke an die Potenzgesetze:   [mm] a^{bc}=(a^b)^c [/mm]

Dann wird aus dem ganzen ne quad. Gleichung, die du mittels PQ-Formel lösen kannst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]