www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - 2tes Moment berechnen
2tes Moment berechnen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2tes Moment berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Do 25.03.2010
Autor: Peon

Aufgabe
Berechnen sie das zweite Moment und die Varianz von [mm] M_{X}(t)= \bruch{\lambda^{2}}{\lambda^{2}-t^{2}} [/mm]

Das 2te Moment soll berechnet werden und die Varianz.
Ausgehend von $ [mm] M_{X}(t)=\bruch{\lambda^{2}}{(\lambda^{2}-t^{2})} [/mm] $

Ich habe das 2te Moment folgends berechnet:
Es gilt 2tes Moment:
$ [mm] E(x^{2})=M''_{X}(0) [/mm] $

M'_{X}(t) = $ [mm] \bruch{2t\lambda^{2}}{(\lambda^{2}-t^{2})^{2}} [/mm] $

M''_{X}(t) = $ [mm] \bruch{2\lambda^{2}(\lambda^{2}-t^{2})^{2}+2t\lambda^{2}2(\lambda^{2}-t^{2})2t}{(\lambda^{2}-t^{2})^{4}} [/mm] $                 (*)

nach unsauber kürzen und zusammenfassen komme ich auf:
$ [mm] M''_{X}(t)=\bruch{2\lambda^{4}+6t^{2}\lambda^{2}}{(\lambda^{2}-t^{2})^{3}} [/mm] $

Also an der Stelle t=0
$ [mm] M''_{X}(0)=\bruch{2\lambda^{4}}{\lambda^{6}} [/mm] $

Setze ich allerdings (*) t=0 komme ich auf
M''_{X}(0)= 2

Da hackts bei mir grade und ich habe es schon x-mal nachgerechnet komme aber einfach nicht auf die richtige lösung. Denke mir es sollte wenigstens ein $ [mm] \lambda [/mm] $ erhalten bleiben aber der "richtigere" Rechenweg scheint mir der genauere.

Zur Varianz:
Es gilt nach Verschiebungssatz VAR(X)= $ [mm] E(X^{2})-E(X)^{2} [/mm] $
Mit dem ersten und zweiten Moment komme ich dabei auf
$ [mm] VAR(X)=M''_{X}(0)-(M'_{X}(0))^{2} [/mm] $
Dabei habe ich dann das Problem, dass das erste Moment im Punkt t=0 M'_{X}(0)=0 annimmt.
Ist daher hier das zweite Moment gleich der Varianz?
kann man die aussage für $ [mm] D(\lambda)-verteilte [/mm] $ ZV verallgemeinern? (nur eine Zusatzfrage)

Ich danke
Peon

        
Bezug
2tes Moment berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Do 25.03.2010
Autor: MathePower

Hallo Peon,

> Berechnen sie das zweite Moment und die Varianz von
> [mm]M_{X}(t)= \bruch{\lambda^{2}}{\lambda^{2}-t^{2}}[/mm]
>  Das 2te
> Moment soll berechnet werden und die Varianz.
>  Ausgehend von
> [mm]M_{X}(t)=\bruch{\lambda^{2}}{(\lambda^{2}-t^{2})}[/mm]
>  
> Ich habe das 2te Moment folgends berechnet:
>  Es gilt 2tes Moment:
>  [mm]E(x^{2})=M''_{X}(0)[/mm]
>  
> M'_{X}(t) = [mm]\bruch{2t\lambda^{2}}{(\lambda^{2}-t^{2})^{2}}[/mm]
>  
> M''_{X}(t) =
> [mm]\bruch{2\lambda^{2}(\lambda^{2}-t^{2})^{2}+2t\lambda^{2}2(\lambda^{2}-t^{2})2t}{(\lambda^{2}-t^{2})^{4}}[/mm]
>                 (*)
>  
> nach unsauber kürzen und zusammenfassen komme ich auf:
>  
> [mm]M''_{X}(t)=\bruch{2\lambda^{4}+6t^{2}\lambda^{2}}{(\lambda^{2}-t^{2})^{3}}[/mm]
>  
> Also an der Stelle t=0
>  [mm]M''_{X}(0)=\bruch{2\lambda^{4}}{\lambda^{6}}[/mm]
>  
> Setze ich allerdings (*) t=0 komme ich auf
>  M''_{X}(0)= 2


Nach Deinen Ausführungen steht hier: [mm]M''_{X}\left(0\right)=\bruch{2}{\lambda^{2}}[/mm]


>  
> Da hackts bei mir grade und ich habe es schon x-mal
> nachgerechnet komme aber einfach nicht auf die richtige
> lösung. Denke mir es sollte wenigstens ein [mm]\lambda[/mm]
> erhalten bleiben aber der "richtigere" Rechenweg scheint
> mir der genauere.
>  
> Zur Varianz:
>  Es gilt nach Verschiebungssatz VAR(X)= [mm]E(X^{2})-E(X)^{2}[/mm]
>  Mit dem ersten und zweiten Moment komme ich dabei auf
>  [mm]VAR(X)=M''_{X}(0)-(M'_{X}(0))^{2}[/mm]
>  Dabei habe ich dann das Problem, dass das erste Moment im
> Punkt t=0 M'_{X}(0)=0 annimmt.
>  Ist daher hier das zweite Moment gleich der Varianz?


Ja.


>  kann man die aussage für [mm]D(\lambda)-verteilte[/mm] ZV
> verallgemeinern? (nur eine Zusatzfrage)
>  
> Ich danke
>  Peon


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]