www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - 2 ableitung nicht hinreichend
2 ableitung nicht hinreichend < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 ableitung nicht hinreichend: Widerspruchsaufgabe ?!
Status: (Frage) beantwortet Status 
Datum: 13:29 Di 18.02.2014
Autor: tschub

Aufgabe
Bestimmen Sie alle lokalen Extremstellen der Funktion
f: R->R , [mm] f(x)=x^4-4x^3+6x^2-4x+1=(x-1)^4 [/mm]

[mm] f'(x)=4x^3-12x^2+12x-4=4(x-1)^3 [/mm]     => f'(1)=0

[mm] f''(x)=12(x-1)^2 [/mm]    => f''(1)=0   <<< und trotzdem gibts da bei x=1 ein lok Minimum...

Als Nullstelle der ersten Ableitung kommt x=1 als dreifache Nullstelle heraus. Nach Schulwissen überprüft man dann mit der zweiten Ableitung, ob diese an der Stelle ungleich Null ist. In diesem Fall ist sie aber gleich Null. Grundsätzlich habe ich das so verstanden, dass dann keine Extremstelle vorliegt.Dennoch liegt eine Extremstelle in x=1.
Kann man sich auf die hinreichende Bedingung doch nicht verlassen?...

PS Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
2 ableitung nicht hinreichend: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Di 18.02.2014
Autor: fred97


> Bestimmen Sie alle lokalen Extremstellen der Funktion
>  f: R->R , [mm]f(x)=x^4-4x^3+6x^2-4x+1=(x-1)^4[/mm]
>  
> [mm]f'(x)=4x^3-12x^2+12x-4=4(x-1)^3[/mm]     => f'(1)=0
>  
> [mm]f''(x)=12(x-1)^2[/mm]    => f''(1)=0   <<< und trotzdem gibts da
> bei x=1 ein lok Minimum...
>  Als Nullstelle der ersten Ableitung kommt x=1 als
> dreifache Nullstelle heraus. Nach Schulwissen überprüft
> man dann mit der zweiten Ableitung, ob diese an der Stelle
> ungleich Null ist. In diesem Fall ist sie aber gleich Null.
> Grundsätzlich habe ich das so verstanden, dass dann keine
> Extremstelle vorliegt.Dennoch liegt eine Extremstelle in
> x=1.
>  Kann man sich auf die hinreichende Bedingung doch nicht
> verlassen?...

Das Kriterium lautet so: wenn [mm] f'(x_0)=0 [/mm] und wenn [mm] f''(x_0) \ne [/mm] 0, so hat f in [mm] x_0 [/mm] ein lokales Extremum.

Die Umkehrung ist falsch wie Du oben siehst. Ein einfaches Bsp. wäre auch [mm] f(x)=x^4 [/mm] , [mm] x_0=0. [/mm]

FRED

>  
> PS Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]