2 Fragen zu Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zwei Fragen zu Potenzreihen (Skript), siehe unten! |
Hallo liebes Forum,
bei mir haben sich beim Stöbern in einem Matheskript zwei Fragen bezüglich Potenzreihen ergeben, die Ihr mir hoffentlich beantworten könnt. Zunächst einmal die zitierten Skriptzeilen (es sind größtenteils "allgemeine" Aussagen, die sich auch in anderen Lehrbüchern wie z.B. dem "Heuser" finden lassen):
[Anfang Zitat]
Satz:
Sei [mm] \sum_{n=0}^\infty a_n(z-z_0)^n [/mm] Potenzreihe mit Konvergenzradius r. Existiert der (möglicherweise uneigentliche) Grenzwert [mm] \limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}| [/mm] , so gilt r = [mm] \limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}| [/mm] .
Beweis:
[...] (mittels Verweis auf Quotientenkriterium für absolute Konvergenz).
Beispiel:
Sei [mm] a_n [/mm] := [mm] \frac{1}{n!} [/mm] für [mm] n\in\IN_0. [/mm] Dann gilt [mm] \limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}| [/mm] = [mm] \limes_{n\rightarrow\infty}|\frac{(n+1)!}{n!}| [/mm] = [mm] \limes_{n\rightarrow\infty}n+1 [/mm] = [mm] \infty. [/mm] Es folgt, dass die Potenzreihe [mm] \sum_{n=0}^\infty\frac{1}{n!}z^n [/mm] fuer alle [mm] z\in\IC [/mm] konvergiert.
Ein Nebenergebnis ist, dass [mm] \limes_{n\rightarrow\infty}\wurzel[n]{n!} [/mm] = [mm] \infty.
[/mm]
[Ende Zitat]
Nun meine Fragen:
1) Zu der Aussage "Es folgt, dass die Potenzreihe [mm] \sum_{n=0}^\infty\frac{1}{n!}z^n [/mm] fuer alle [mm] z\in\IC [/mm] konvergiert": Was ist, wenn ich z=0 wähle? Dann ergibt sich beim ersten Index (also n=0) der "Teilwert" [mm] z^n [/mm] = [mm] 0^0. [/mm] Meines Wissens nach ist [mm] 0^0 [/mm] aber nicht definiert. Was passiert an dieser Stelle? Wird dieser "Wert" einfach bei der Bildung der jeweiligen (Partial)summe weggelassen?
2) Zum Zusatz "Ein Nebenergebnis ist, dass [mm] \limes_{n\rightarrow\infty}\wurzel[n]{n!} [/mm] = [mm] \infty.": [/mm] Kann mir bitte jemand erklären, warum sich das scheinbar "mal eben so" ergibt? Ich sehe das nicht so ganz?!
Im Voraus schonmal ein großes Danke für hilfreiche Antworten auf meine beiden Fragen
|
|
|
|
Hallo neuling_hier,
> Zwei Fragen zu Potenzreihen (Skript), siehe unten!
> Hallo liebes Forum,
>
> bei mir haben sich beim Stöbern in einem Matheskript zwei
> Fragen bezüglich Potenzreihen ergeben, die Ihr mir
> hoffentlich beantworten könnt. Zunächst einmal die
> zitierten Skriptzeilen (es sind größtenteils "allgemeine"
> Aussagen, die sich auch in anderen Lehrbüchern wie z.B.
> dem "Heuser" finden lassen):
>
> [Anfang Zitat]
>
> Satz:
> Sei [mm]\sum_{n=0}^\infty a_n(z-z_0)^n[/mm] Potenzreihe mit
> Konvergenzradius r. Existiert der (möglicherweise
> uneigentliche) Grenzwert
> [mm]\limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|[/mm] , so gilt
> r = [mm]\limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|[/mm] .
>
> Beweis:
> [...] (mittels Verweis auf Quotientenkriterium für
> absolute Konvergenz).
>
> Beispiel:
> Sei [mm]a_n[/mm] := [mm]\frac{1}{n!}[/mm] für [mm]n\in\IN_0.[/mm] Dann gilt
> [mm]\limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|[/mm]
Hier muss es doch [mm] $\lim\limits_{n\to\infty}\left|\frac{a_{\red{n}}}{a_{\red{n+1}}}\right|$ [/mm] lauten
> = [mm]\limes_{n\rightarrow\infty}|\frac{(n+1)!}{n!}|[/mm] =
> [mm]\limes_{n\rightarrow\infty}n+1[/mm] = [mm]\infty.[/mm] Es folgt, dass die
> Potenzreihe [mm]\sum_{n=0}^\infty\frac{1}{n!}z^n[/mm] fuer alle
> [mm]z\in\IC[/mm] konvergiert.
> Ein Nebenergebnis ist, dass
> [mm]\limes_{n\rightarrow\infty}\wurzel[n]{n!}[/mm] = [mm]\infty.[/mm]
>
> [Ende Zitat]
>
> Nun meine Fragen:
>
> 1) Zu der Aussage "Es folgt, dass die Potenzreihe
> [mm]\sum_{n=0}^\infty\frac{1}{n!}z^n[/mm] fuer alle [mm]z\in\IC[/mm]
> konvergiert": Was ist, wenn ich z=0 wähle? Dann ergibt
> sich beim ersten Index (also n=0) der "Teilwert" [mm]z^n[/mm] = [mm]0^0.[/mm]
> Meines Wissens nach ist [mm]0^0[/mm] aber nicht definiert. Was
> passiert an dieser Stelle? Wird dieser "Wert" einfach bei
> der Bildung der jeweiligen (Partial)summe weggelassen?
[mm] $0^0$ [/mm] ist so ein Streitthema, üblicherweise setzt man als Konvention [mm] $0^0:=1$ [/mm] fest, das bietet sich gerade hier bei den Potenzreihen praktischerweise an ...
>
> 2) Zum Zusatz "Ein Nebenergebnis ist, dass
> [mm]\limes_{n\rightarrow\infty}\wurzel[n]{n!}[/mm] = [mm]\infty.":[/mm] Kann
> mir bitte jemand erklären, warum sich das scheinbar "mal
> eben so" ergibt? Ich sehe das nicht so ganz?!
Nun, du kannst den Konvergenzradius anstatt über das Quotientenkriterium auch über das Wurzelkriterium herleiten, was zum Kriterium von Cauchy-Hadamard führt.
Der K-Radius $r$ einer Potenzreihe [mm] $\sum\limits_{n=0}^{\infty}a_n\cdot{}x^n$ [/mm] berechnet sich danach als [mm] $r=\frac{1}{\limsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}$.
[/mm]
Wie gesagt, die Herleitung folgt ganz analog der Herleitung aus dem QK
Also ist der K-radius der Reihe [mm] $\sum\limits_{n=0}^{\infty}\frac{1}{n!}\cdot{}x^n$ [/mm] dann [mm] $\frac{1}{\limsup\limits_{n\to\infty}\sqrt[n]{\left|\frac{1}{n!}\right|}}=\limsup\limits_{n\to\infty}\sqrt[n]{n!}$
[/mm]
Und den K-radius habt ihr ja im Bsp. oben mit dem QK als [mm] $\infty$ [/mm] berechnet.
Also [mm] $\limsup\limits_{n\to\infty}\sqrt[n]{n!}=\lim\limits_{n\to\infty}\sqrt[n]{n!}=\infty$
[/mm]
> Im Voraus schonmal ein großes Danke für hilfreiche
> Antworten auf meine beiden Fragen
LG
schachuzipus
|
|
|
|