www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - 2 Ebenen orthogonal zueinander
2 Ebenen orthogonal zueinander < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Ebenen orthogonal zueinander: Vorgehen?
Status: (Frage) beantwortet Status 
Datum: 09:28 Mo 18.06.2007
Autor: Wehm

Hoi.

Wenn ich zwei ebenen in Parameterform gegeben hab

[mm] E_1:\vec{x} [/mm] = [mm] \vektor{0\\0\\0} [/mm] + t [mm] \vektor{1\\0\\0} [/mm] + s [mm] \vektor{0\\1\\0} [/mm]

und

[mm] E_2:\vec{x} [/mm] = [mm] \vektor{0\\0\\0} [/mm] + t [mm] \vektor{0\\1\\0} [/mm] + s [mm] \vektor{0\\0\\1} [/mm]

und ich nun wissen möchte, ob die orthogonal zueinander sind was ja so ist. Wie kann ich da smachen? Ich möchte aber nicht die Normalenvektoren ausrechnen und dann gucken, ob deren Skalarprodukt 0 ist. Das möchte ich nicht. Kann ich da nicht ein paar Gleichungen aufstellen und gucken, ob das Skalarprodukt von den Richtungsvektoren Null ist. Oder is das mit den Normalvektoren das einzige Verfahren? Wenn euch nix anderes einfällt dann gibts da wohl auch nix.

Gruß
Wehm



        
Bezug
2 Ebenen orthogonal zueinander: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Mo 18.06.2007
Autor: angela.h.b.


> Hoi.
>  
> Wenn ich zwei ebenen in Parameterform gegeben hab
>  
> [mm]E_1:\vec{x}[/mm] = [mm]\vektor{0\\0\\0}[/mm] + t [mm]\vektor{1\\0\\0}[/mm] + s
> [mm]\vektor{0\\1\\0}[/mm]
>  
> und
>  
> [mm]E_2:\vec{x}[/mm] = [mm]\vektor{0\\0\\0}[/mm] + t [mm]\vektor{0\\1\\0}[/mm] + s
> [mm]\vektor{0\\0\\1}[/mm]
>  
> und ich nun wissen möchte, ob die orthogonal zueinander
> sind was ja so ist. Wie kann ich da smachen? Ich möchte
> aber nicht die Normalenvektoren ausrechnen und dann gucken,
> ob deren Skalarprodukt 0 ist. Das möchte ich nicht.

Hallo,

dann guck eben nach, ob jeder Vektor der Ebene [mm] E_1 [/mm] senkrecht auf jedem Vektor der Ebenen [mm] E_2 [/mm] steht,

d.h. ob für alle [mm] s_1,t_1,s_2, t_2 [/mm] gilt

[mm] (\vektor{0\\0\\0}+ t_1\vektor{1\\0\\0} [/mm] + [mm] s_2\vektor{0\\1\\0})*(\vektor{0\\0\\0}+ t_2\vektor{0\\1\\0}+ s_2\vektor{0\\0\\1})=0 [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]