www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - 2 Aufgaben , suche Ansatz/Tipp
2 Aufgaben , suche Ansatz/Tipp < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Aufgaben , suche Ansatz/Tipp: 1. Aufgabe ( Nummer 20 )
Status: (Frage) beantwortet Status 
Datum: 18:18 So 18.03.2012
Autor: pc_doctor

Aufgabe
Wie muss a > 0 gewählt werden , damit die gelbe Fläche den Inhalt [mm] \bruch{1}{8} [/mm] hat ?

Aufgabe/Skizze ( Nummer 20 - rot markierte, bitte Zoomen bei Bedarf ) :

http://s14.directupload.net/images/120318/7q858rmo.jpg

Hallo , also ich suche für diese Aufgabe 20 ( rot markiert) einen Ansatz bzw. einen Tipp.

Ich habe zwei Funktionen.

Eine Gerade mit f(x) = x und g(x) = a * [mm] x^{3} [/mm]


Vielleicht könnte man hier zuerst die Schnittpunkte rechnen , nach x auflösen :

f(x) = g(x)

=> x = a* [mm] x^{3} [/mm]
[mm] x^{4} [/mm] = a
x = [mm] \wurzel[4]{a} [/mm]

Ich habe ja auch noch die Gesamtfläche und zwar [mm] \bruch{1}{8} [/mm] , das muss ich ja später mit dem Integral gleichsetzen , aber ich habe keine Integrationsgrenzen , was bringt mir dieser Schnittpunkt jetzt ?
Kann ich mit den Schnittpunkten die Integrationsgrenzen "bestimmen" ?

Vielen Dank schonmal im Voraus.


        
Bezug
2 Aufgaben , suche Ansatz/Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 So 18.03.2012
Autor: Steffi21

Hallo, betrachten wir nur den 1. Quadranten, die Fläche beträgt also [mm] \bruch{1}{16}, [/mm] deine Integrationsgrenzen sind 0 und die Schnittstelle beider Funktionen im 1. Quadranten, du hast die Funktionen gleichgesetzt

[mm] x=a*x^3 [/mm] für [mm] x\not=0 [/mm]

[mm] 1=a*x^2 [/mm]

[mm] x_1_2=..... [/mm]

Steffi



Bezug
                
Bezug
2 Aufgaben , suche Ansatz/Tipp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 So 18.03.2012
Autor: pc_doctor


> Hallo, betrachten wir nur den 1. Quadranten, die Fläche
> beträgt also [mm]\bruch{1}{16},[/mm] deine Integrationsgrenzen sind
> 0 und die Schnittstelle beider Funktionen im 1. Quadranten,
> du hast die Die Funktionen gleichgesetzt
>  
> [mm]x=a*x^3[/mm] für [mm]x\not=0[/mm]
>  
> [mm]1=a*x^2[/mm]
>  
> [mm]x_1_2=.....[/mm]
>  
> Steffi
>  
>  


Danke für die Antwort Steffi , hab als Schnittpunkt [mm] \wurzel[]{\bruch{1}{a}} [/mm] raus.

Ist das richtig ?

Bezug
                        
Bezug
2 Aufgaben , suche Ansatz/Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 So 18.03.2012
Autor: Steffi21

Hallo, bedenke, [mm] \wurzel{\bruch{1}{a}} [/mm] ist eine von drei SchnittSTELLEN, löse jetzt

[mm] \integral_{0}^{ \wurzel{\bruch{1}{a}}}{x-a*x^3 dx}=\bruch{1}{16} [/mm]

nach a auf

Steffi

Bezug
                                
Bezug
2 Aufgaben , suche Ansatz/Tipp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 So 18.03.2012
Autor: pc_doctor

Also , a ist bei mir 4.

Und jetzt nochmal das gleiche für den 3. Quadranten.

Ich muss hier jetzt nochmal f(x) = g(x) benutzen oder ?

Also am Ende steht dann

x = [mm] ax^{3} [/mm]
Und dann nach x auflösen , aber dann habe ich doch wieder den gleichen Wert ?

Bezug
                                        
Bezug
2 Aufgaben , suche Ansatz/Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 So 18.03.2012
Autor: Steffi21

Hallo, a=4 ist ok, warum noch für den 3. Quadranten? die Funktion [mm] f(x)=a*x^3 [/mm] ist punktsymmetrisch zum Koordinatenursprung, die gelben Flächen im 1. und 3. Quadranten sind gleich, darum haben wir mit [mm] \bruch{1}{16} [/mm] gerechnet, die Hälfte von [mm] \bruch{1}{8} [/mm] Steffi

Bezug
                                                
Bezug
2 Aufgaben , suche Ansatz/Tipp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 So 18.03.2012
Autor: pc_doctor

Aufgabe
Die eingezeichnte Gerade h teilt die Fläche zwischen f und g in zwei Teilflächen.

In welchem Verhältnis stehen die Inhalte der beiden Teilstücke ?

Die Funktionsgleichungen lauten :

f(x) = [mm] -\bruch{1}{3}x^{2} [/mm] + [mm] \bruch{8}{3}x [/mm] - [mm] \bruch{4}{3} [/mm]

g(x) = [mm] (x-2)^{2} [/mm]

h(x) = [mm] -\bruch{4}{3}x [/mm] + [mm] \bruch{16}{3} [/mm]

Aufgabe/Skizze ( Nummer 22 - blau markiert, bitte Zoomen bei Bedarf)

Link :
http://s14.directupload.net/images/120318/7q858rmo.jpg


Achsoo , oh stimmt , alles klar wieder was dazu gelernt ( hatte das garnicht beachtet ) , vielen Dank.

Kommen wir nun zur zweiten Aufgabe bitte:

Zunächst einmal kann ich doch die blaue Funktion mit der Gerade gleichsetzen.

Also

[mm] -\bruch{4}{3}x [/mm] + [mm] \bruch{16}{3} [/mm] = [mm] (x-2)^{2} [/mm]

Dann kann die Schnittpunkte berechnen , nehme die Schnittpunkte als Integrationsgrenze , integriere.

Das gleiche mache ich für  [mm] -\bruch{4}{3}x [/mm] + [mm] \bruch{16}{3} [/mm] = [mm] -\bruch{1}{3}x^{2} [/mm] + [mm] \bruch{8}{3}x [/mm] - [mm] \bruch{4}{3} [/mm]

Berechne hier auch die Schnittstellen , setze die Integrationsgrenzen fest , integriere.

Wenn ich dann zwei Werte habe , was mache ich dann ?

Wie bilde ich dann ein Verhältnis ?





Bezug
                                                        
Bezug
2 Aufgaben , suche Ansatz/Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 18.03.2012
Autor: Steffi21

Hallo

[Dateianhang nicht öffentlich]

zerlege die Fächen in jeweils zwei Teilflächen blau/grün und rot/gelb, Schnittstellen berechnen, berechne dann die vier Teilflächen,
ein Beispiel für ein Verhältnis [mm] \bruch{20}{100}=\bruch{1}{5} [/mm]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                                
Bezug
2 Aufgaben , suche Ansatz/Tipp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 So 18.03.2012
Autor: pc_doctor

Alles klar vielen vielen Dank für die Antworten und die Skizze , echt toll gemacht , dankeschön !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]