www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - 2-dim UVR
2-dim UVR < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2-dim UVR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mi 02.07.2014
Autor: DesterX

Hallo zusammen,
ich suche eine Basis eines 2-dimensionalen Untervektorraums $U$ des [mm] $\IR^n$. [/mm]
Für Vektoren [mm] $u=(u_1,\ldots,u_n) \in [/mm] U$ soll gelten, dass

[mm] $u_i=\lambda u_{i-1} [/mm] + [mm] (1-\lambda) u_{i+1}$ [/mm] für alle [mm] $i=2,\ldots,n-1$, [/mm] sowie [mm] $\lambda \in (\frac12,1] [/mm] .

Es gilt offensichtlich [mm] $v=(1,\ldots,1) \in [/mm] U$ . Doch mir will leider nicht recht ein zweiter Vektor $w$ einfallen, sodass [mm] $\{v,w\}$ [/mm] eine Basis von $U$ ist.
Habt ihr eine Idee?
Vielen Dank vorab,
Dester  

        
Bezug
2-dim UVR: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 02.07.2014
Autor: Sax

Hi,

für [mm] \lambda\neq1 [/mm] wähle [mm] u_1 [/mm] und d beliebig und setze  [mm] q=\bruch{\lambda}{1-\lambda}. [/mm]
Dann erfüllt der Vektor u mit  [mm] u_i=u_1+d*\summe_{k=0}^{i-2}q^k [/mm]  die Bedingung.

Gruß Sax.

Bezug
                
Bezug
2-dim UVR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Do 03.07.2014
Autor: DesterX

Danke für deine Antwort.
Wie hast du das hergeleitet?

Bezug
                        
Bezug
2-dim UVR: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Do 03.07.2014
Autor: fred97


> Danke für deine Antwort.
>  Wie hast du das hergeleitet?


Löse mal $ [mm] $u_i=\lambda u_{i-1} [/mm] $ + $ [mm] (1-\lambda) u_{i+1}$ [/mm] $  nach [mm] u_{i+1} [/mm] auf.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]