www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - 2-absolut konvergente reihen
2-absolut konvergente reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2-absolut konvergente reihen: Idee, Tipp
Status: (Frage) beantwortet Status 
Datum: 12:16 Mi 21.11.2007
Autor: howtoadd

Aufgabe
Seien [mm] \summe^{\infty}_{ n= 0}a_n [/mm] und [mm] \summe^{\infty}_{n= 0}b_n [/mm] zwei absolut konvergente Reihen, wobei [mm] \summe^{\infty}_{n= 0}a_n=A [/mm] und [mm] \summe^{\infty}_{n= 0}b_n=B [/mm] .
Zeigen Sie, dass die Reihe [mm] \summe^{\infty}_{n= 0}a_n \pmat{ \summe^{ \infty}_{ m= 0}b_m } [/mm]
auch absolut konvergent ist, und die Reihe gegen die Zahl A * B konvergiert.

hallo an alle!

bin wieder am verzweifeln! also, was konvergente reihen sind verstehe ich, auch die Cauchy Folge... aber ich verstehe die absolut konvergente reihe nicht!
und auch nicht, wie ich das beweisen soll!
kann mir jemand helfen an die aufgabe ran zu gehen, mit kleinen schritten???
bittee???

        
Bezug
2-absolut konvergente reihen: Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 21.11.2007
Autor: howtoadd

konnte die aufgabe nicht so gut darstellen, hier ist sie nochmal zu sehen:[]http://www.math.uni-bielefeld.de/~hemion/NWI/NWI_Ubung6.pdf

Bezug
        
Bezug
2-absolut konvergente reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mi 21.11.2007
Autor: rainerS

Hallo!

> Seien [mm]\summe^{\infty}_{ n= 0}a_n[/mm] und [mm]\summe^{\infty}_{n= 0}b_n[/mm]
> zwei absolut konvergente Reihen, wobei [mm]\summe^{\infty}_{n= 0}a_n=A[/mm]
> und [mm]\summe^{\infty}_{n= 0}b_n=B[/mm] .
>  Zeigen Sie, dass die Reihe [mm]\summe^{\infty}_{n= 0}a_n \pmat{ \summe^{ \infty}_{ m= 0}b_m }[/mm]
>  
> auch absolut konvergent ist, und die Reihe gegen die Zahl A
> * B konvergiert.
>  
> hallo an alle!
>  
> bin wieder am verzweifeln! also, was konvergente reihen
> sind verstehe ich, auch die Cauchy Folge... aber ich
> verstehe die absolut konvergente reihe nicht!

Absolute Konvergenz ist ganz einfach: die Reihe [mm]\summe^{\infty}_{ n= 0}a_n[/mm] heisst absolut konvergent, wenn die Reihe der Absolutbeträge [mm]\summe^{\infty}_{ n= 0}|a_n|[/mm] konvergent ist.

Das hat eine Reihe von Konsequenzen:
- Jede absolut konvergente Reihe ist konvergent.
- Die Summanden einer absolute konvergenten Reihe können beliebig umgeordnet werden, ohne dass sich am Konvergenzverhalten oder am Grenzwert etwas ändert.

>  und auch nicht, wie ich das beweisen soll!

Zeige, dass die Folge der Partialsummen der Absolutbeträge
[mm]x_i = \summe^{i}_{n= 0}\left|a_n \pmat{ \summe^{ \infty}_{ m= 0}b_m }\right|[/mm]
konvergiert! Benutze dabei die Voraussetzungen!

Viele Grüße
   Rainer


Bezug
                
Bezug
2-absolut konvergente reihen: DaNkE
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 So 25.11.2007
Autor: howtoadd

danke, ich glaub ich hab die aufgabe lösen können!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]