www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - 1. Semester Mathematik
1. Semester Mathematik < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Semester Mathematik: Aufg. 2
Status: (Frage) beantwortet Status 
Datum: 04:57 Do 23.10.2014
Autor: unfaehik


Aufgabe
Prüfen Sie, ob folgende Abbildungen injektiv, surjektiv oder bijektiv sind.

f:R→R,x→ x³



----
Zu 2: Durch´s Zeichnen seh ich das es injektiv ist, aber ich vermute stark das man es sich nicht so leicht machen kann und deshalb irgendwie schriftlich prüfen muss, nur wie weiß ich nicht wie.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/1-Semster-Mathematik
und
http://www.matheboard.de/thread.php?threadid=547365


        
Bezug
1. Semester Mathematik: Antwort
Status: (Antwort) fertig Status 
Datum: 05:17 Do 23.10.2014
Autor: Fulla

Hallo unfaehik!


> Prüfen Sie, ob folgende Abbildungen injektiv, surjektiv
> oder bijektiv sind.

>

> f:R→R,x→ x³

> ----
> Zu 2: Durch´s Zeichnen seh ich das es injektiv ist, aber
> ich vermute stark das man es sich nicht so leicht machen
> kann und deshalb irgendwie schriftlich prüfen muss, nur
> wie weiß ich nicht wie.

Richtig, Zeichnen hilft zwar immer, um die Sachlage zu begreifen, ist aber selten ein Beweis.
Um Aussagen zu beweisen, musst du Definitionen und Sätze (ggf. auch Lemmata und Propositionen) benutzen.
Also: Wie lauten die Definitionen von "injektiv", "surjektiv" und "bijektiv"? Da sollte jeweils ein "f(x)" auftauchen. Ersetze dieses hier durch [mm]x^3[/mm] und prüfe, ob du zu einem Widerspruch kommst oder nicht.


Lieben Gruß,
Fulla

Bezug
                
Bezug
1. Semester Mathematik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Do 23.10.2014
Autor: unfaehik

Ich hab es versucht zu machen für 3 Aufgaben:

1. f: [mm] \IR [/mm] -> [mm] \IR [/mm] , x [mm] \mapsto [/mm] x²
2. f: [mm] \IR [/mm] -> [mm] \IR [/mm] , x [mm] \mapsto [/mm] x³
3. f: [mm] \IR [/mm] -> [mm] \IR_+ [/mm] , x [mm] \mapsto [/mm] x²

Auf 1 hab ich geschrieben:
f(x) = y
x² = y
f({-x,x}) = {x²}

Auf 2 hab ich geantwortet:
f(x) = y
x³ = y
f({-x,x}) = {(-x)³,x³}

Und die letzte antwort:
f(x) = y
x² = y
f({x}) = {x²}

Wäre das so dann richtig beantwortet ?

Bezug
                        
Bezug
1. Semester Mathematik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Do 23.10.2014
Autor: fred97


> Ich hab es versucht zu machen für 3 Aufgaben:
>  
> 1. f: [mm]\IR[/mm] -> [mm]\IR[/mm] , x [mm]\mapsto[/mm] x²
>  2. f: [mm]\IR[/mm] -> [mm]\IR[/mm] , x [mm]\mapsto[/mm] x³

>  3. f: [mm]\IR[/mm] -> [mm]\IR_+[/mm] , x [mm]\mapsto[/mm] x²

>  
> Auf 1 hab ich geschrieben:
>  f(x) = y
>  x² = y
>  f({-x,x}) = {x²}

Was soll das denn bedeuten ?


>  
> Auf 2 hab ich geantwortet:
>  f(x) = y
>  x³ = y
>  f({-x,x}) = {(-x)³,x³}

Was soll das denn bedeuten ?


>  
> Und die letzte antwort:
>  f(x) = y
>  x² = y
>  f({x}) = {x²}

Was soll das denn bedeuten ?


>  
> Wäre das so dann richtig beantwortet ?

Nein. Es ist wirr-warr !

Wenn ich mich nicht täusche , so ging es um "injektiv", "surjektiv", ....

FRED


Bezug
                                
Bezug
1. Semester Mathematik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 23.10.2014
Autor: unfaehik

Richtig. Und mir ist  was unschönes passiert :X ich versuche es anders.

> Auf 1 hab ich geschrieben:
>  f(x) = y
>  x² = y
>  [mm] x_1 [/mm] = y
> [mm] -x_2 [/mm] = y
>  f({-x,x}) = {x²}

Soll bedeuten das es für 2 verschiedene "x" einen y-wert gibt. Also Surjektiv.

> Auf 2 hab ich geantwortet:
>  f(x) = y
>  x³ = y
>  f({-x,x}) = {(-x)³,x³}

Soll bedeuten das wenn wir den selben x wert einmal im negativen und einmal im positiven hoch 3 nehmen, dass wir für die beiden x-werte 2 verschiedene y-werte finden. Also Injektiv.

> Und die letzte antwort:
>  f(x) = y
>  x² = y
>  [mm] x_1 [/mm] = y
> [mm] -x_2 [/mm] = y <--- Fällt weg
>  f({x}) = {x²}

Hier ist fast das selbe wie bei der ersten antwort, nur das es diesmal keinen negativen x-wert geben kann wegen: f: [mm] \IR [/mm] -> [mm] \IR_+ [/mm]
also ist es hier diesmal Injektiv.

Bezug
                                        
Bezug
1. Semester Mathematik: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Do 23.10.2014
Autor: sissile

Hallo unfaehik,
> Soll bedeuten das es für 2 verschiedene "x" einen y-wert
> gibt. Also Surjektiv.

?
Du sagst wenn wir zwei verschiedene Argumente haben [mm] x\not=y [/mm] so gilt f(x)=f(y)? Das hat nichts mit der Surjektivität zu tun sondern ist die Negation, also das Gegenteil der Injektivität.

> Soll bedeuten das wenn wir den selben x wert einmal im
> negativen und einmal im positiven hoch 3 nehmen, dass wir
> für die beiden x-werte 2 verschiedene y-werte finden. Also
> Injektiv.

Das stimmt nicht. Du hast die Funktion [mm] f(x)=x^3 [/mm] nicht [mm] f(x)=x^2, [/mm] zumindest steht das in der Angabe im Anfangspost.
Und wenn du sowas finden würdest wäre es ein Bsp dafür, dass die Funktion nicht injektiv ist.


Befreie dich von deinen Aufzeichungen und beginne von Anfang;)

1)Injektivität
Wie lautet die Definition?
f:A->B ist injektiv, wenn jedes Element in der Zielmenge höchstens einmal getroffen wird. Anders gesagt wir verlangen, dass verschiedene Urbilder auch verschiedene Bilder haben:
[mm] x\not=y \in [/mm] A => f(x) [mm] \not= [/mm] f(y)
oder
f(x)=f(y) => x=y
(Die zwei Formelschreibweisen bedeuten das selbe, da wenn p=>q automatisch folgt [mm] \neg [/mm] q => [mm] \neg [/mm] p)

Hier an der Funktion [mm] f(x)=x^3, [/mm] f: [mm] \IR [/mm] -> [mm] \IR [/mm]
Du nimmst an f(x)=f(y)
ZuZeigen: x=y
f(x)=f(y) d.h. [mm] x^3=y^3 [/mm]
[mm] \gdw x^3-y^3=0 [/mm]
[mm] \gdw(x-y)(x^2+xy+y^2)=0 [/mm]
x-y=0 oder  [mm] x^2 [/mm] + [mm] xy+y^2=0 [/mm]
Was sind die Lösungen der Gleichung? Eine Lösung siehst du sofort. Ist sie die einzige?

2)Surjektivität
Wieder, wie lautet die Definition?

LG,
sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]