www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Umkehrfunktion
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Umkehrfunktion

Definition Umkehrfunktion


Schule

Eine Funktion f ist umkehrbar, wenn es zu jedem $ y \in \IW_f $ auch nur genau ein $ x \in \ID_f $ gibt, d.h. wenn die Zuordnungen $ x \rightarrow y $ und $ y \rightarrow x $ beide eindeutig sind.
Die Umkehrfunktion wird i.a. mit $ f^{-1} $ bezeichnet.

Wenn eine Funktion in einem Intervall streng monoton ist, dann ist jedem x aus dem Intervall genau ein y zugeordnet und umgekehrt. Somit ist die Funktion in diesem Monotoniebereich umkehrbar.

Bei der Bildung der Umkehrfunktion werden die Paare (x|y) vertauscht zu (y|x).
Man kann also die Funktionsgleichung der Umkehrfunktion bestimmen, indem man in der Funktionsgleichung y = f(x) die Variablen x und y vertauscht und diese Gleichung (falls möglich) nach y auflöst.

Dadurch vertauschen sich auch Definitionsbereich und Wertebereich.

Daraus ergibt sich auch der Graph der Umkehrfunktion:
der Graph von f wird an der (Haupt-)Winkelhalbierenden $ y = x $ gespiegelt.


Beispiel

siehe SchulMatheFAQ: Umkehrfunktionbestimmung



Universität

Seien $ D $ und $ Z $ nichtleere Mengen.
Ist eine Funktion $ f:D \rightarrow Z $ bijektiv, so existiert eine Funktion $ f^{-1}: Z \rightarrow D $ mit folgenden zwei Eigenschaften:
1.) $ f^{-1} \circ f=id_D $
2.) $ f \circ f^{-1}=id_Z $

In diesem Fall heißt $ f^{-1} $ die Umkehrfunktion von $ f $.
Die Funktion $ id_D $ (bzw. $ id_Z $) ist dabei die Identität auf $ D $ (bzw. $ Z $).


Beispiele.

1.) Die Funktion $ f:[0;\infty[ $  $ \rightarrow $  $ ]-\infty;-3] $ definiert durch $ f(x):=-x^3-3 $ ist bijektiv.
Wir berechnen die zugehörige Umkehrfunktion:
Dazu geben wir uns ein festes $ y $ aus dem Zielbereich der Funktion $ f $ vor und suchen ein $ x $ aus dem Definitionsbereich mit $ f(x)=y $. Wir haben also die Gleichung $ -x^3-3=y $ nach $ x $ aufzulösen:

$ -x^3-3=y $
$ \gdw $
$ -x^3=y+3 $
$ \gdw $
$ x^3=-y-3 $
$ \gdw $
$ x=\wurzel[3]{-y-3} $

Die Umkehrfunktion zu obiger Funktion $ f $ ist also gegeben durch die Vorschrift:
$ f^{-1}(y)=\wurzel[3]{-y-3} $.
Da man Funktionen meist in Abhängigkeit vom Parameter $ x $ schreibt, schreiben wir anstelle des Parameters $ y $ den Parameter $ x $:
$ f^{-1}(x)=\wurzel[3]{-x-3} $
Somit gelangen wir zum Ergebnis:
Die Umkehrfunktion zu der (bijektiven) Funktion $ f:[0;\infty[ $  $ \rightarrow $  $ ]-\infty;-3] $ definiert durch $ f(x):=-x^3-3 $ ist gegeben durch:
$ f^{-1}: ]-\infty;-3] $  $ \rightarrow $  $ [0;\infty[ $ und der Rechenvorschrift $ f^{-1}(x)=\wurzel[3]{-x-3} $.


Bemerkungen.

1.) Die Umkehrfunktion $ f^{-1} $ einer bijektiven Funktion $ f:D \rightarrow Z $ ordnet jedem Element aus dem Zielbereich $ Z $ genau ein Element des Definitionsbereiches zu.

2.) Ist $ f:D \rightarrow Z $ bijektiv, so ist auch die Umkehrfunktion $ f^{-1}:Z \rightarrow D $ eine bijektive Funktion.

3.) Man beachte, dass man $ f^{-1} $ lediglich als Symbol für die Umkehrfunktion einer Funktion $ f $ (im Falle der Existenz der Umkehrfunktion; also wenn $ f $ bijektiv ist) benutzt. Die Gefahr der Verwechslung mit dem Ausdruck $ \frac{1}{f} $ wird meist ausgeschlossen, weil sich meist aus dem Zusammenhang ergibt, ob $ f^{-1} $ als Symbol für die Umkehrfunktion (einer Funktion $ f $) benutzt wird oder nicht.

Erstellt: Fr 08.10.2004 von Marcel
Letzte Änderung: Do 10.02.2005 um 17:41 von DaMenge
Weitere Autoren: Marc
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]