www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - ggT(m,n) bestimmen
ggT(m,n) bestimmen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT(m,n) bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Fr 20.04.2012
Autor: Achilles2084

Aufgabe
Man bestimme für folgende Zahlenpaare (m,n) jeweils den größten gemeinsamen Teiler ggT(m,n), sowie ganze Zahlen x,y [mm] \in \IZ [/mm] mit

ggt(m,n)=x*m+y*n

b) m=143 und n=770

Hallo ihr Lieben,

haben gestern den euklidischen Algorithmus eingeführt und soweit bin ich mit der Aufgabe klar gekommen.

Bei dem obigen Aufgabenteil ist m<n und das verwirrt mich etwas. Wir haben nur Beispiele mit m>n.

Kann man die beiden einfach vertauschen und den Algorithmus wie gehabt anwenden oder begehe ich da einen massiven Fehler? ;)

Gruß

        
Bezug
ggT(m,n) bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Fr 20.04.2012
Autor: schachuzipus

Hallo Achilles2084,


> Man bestimme für folgende Zahlenpaare (m,n) jeweils den
> größten gemeinsamen Teiler ggT(m,n), sowie ganze Zahlen
> x,y [mm]\in \IZ[/mm] mit
>  
> ggt(m,n)=x*m+y*n

Diese [mm]x,y[/mm] gewinnst du, wenn du im euklidischen Algorithmus, mit dem du den [mm]\operatorname{ggT}(m,n)[/mm] bestimmt hast, sukzessive rückwärts einsetzt und nach [mm][/mm][mm]\operatorname{ggT}(m,n)[/mm] umstellst.

>  
> b) m=143 und n=770
>  Hallo ihr Lieben,
>  
> haben gestern den euklidischen Algorithmus eingeführt und
> soweit bin ich mit der Aufgabe klar gekommen.
>  
> Bei dem obigen Aufgabenteil ist m<n und="" das="" verwirrt="" mich="" <br="">> etwas. Wir haben nur Beispiele mit m>n.
>  
> Kann man die beiden einfach vertauschen und den Algorithmus
> wie gehabt anwenden oder begehe ich da einen massiven
> Fehler? ;)

Ja, du kannst es wie gehabt machen:

Es ist [mm]\operatorname{ggT}(m,n)=\operatorname{ggT}(n,m)[/mm].

Du kannst also vertauschen ...

>  
> Gruß

LG

schachuzipus
</n>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]