www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - a<b => a^n < b^n mit Axiomen
a<b => a^n < b^n mit Axiomen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

a<b => a^n < b^n mit Axiomen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:04 Do 03.11.2011
Autor: KingArthur

Aufgabe
Folgern sie mit Pedanterie aus den Anordnungsaxiomen:
(a) seine a, b > 0 und n [mm] \ge [/mm] 1 eine Natürliche Zahl. Dann gilt genau dann a<b wenn [mm] a^{n} [/mm] < [mm] b^{n} [/mm] gilt.
(b) Sei 0 < a < 1 und seien n>m natürliche Zahlen. Dann gilt [mm] a^{n} [/mm] < [mm] a^{m} [/mm]

Also ich habe gehört ein Übungsleiter soll den Tipp gegeben haben, dass mit Induktion zu machen.
Ich hab aber erstmal so angefangen gehabt:
               a<b
O3 [mm] \Rightarrow [/mm] a+c < b+c
O4 [mm] \Rightarrow [/mm] a*(a+c) < a*(b+c)
D [mm] \Rightarrow [/mm] a²+a*c < a*b+a*c
O3 [mm] \Rightarrow [/mm] a² < a*b
O4 [mm] \Rightarrow [/mm] b*a² < b*(a*b)
M1+M2 [mm] \Rightarrow [/mm] a²*b < a*(b*b)
[mm] \Rightarrow [/mm]    a²*b < a*b²
[mm] \Rightarrow [/mm] a²*a < a²*b < a*b² < b*b²  (jeweils da gilt: a<b)
[mm] \Rightarrow [/mm] a³ < b³

und das kann man ja dann weiter führen bis [mm] a^{n} [/mm] < [mm] b^{n} [/mm]

Meine erste Frage ist: kann ich das so Machen?
und die zweite Frage ist: wie zeige ich denn jetzt die andere Inklusion? oder Reicht das so?
Bzw. Falls es einfacher ist : wie geht das mit Induktionsverfahren^^

zu (b) hab ich leider noch keinen Ansatz... :(

Gruß
Arthur

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
a<b => a^n < b^n mit Axiomen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Fr 04.11.2011
Autor: Helbig


>  [mm]\Rightarrow[/mm]    a²*b < a*b²
>  [mm]\Rightarrow[/mm] a²*a < a²*b < a*b² < b*b²  (jeweils da gilt: a<b)

Nach welchem Ordnungsaxiom folgt das jetzt?

>  [mm]\Rightarrow[/mm] a³ < b³
>  
> und das kann man ja dann weiter führen bis [mm]a^{n}[/mm] < [mm]b^{n}[/mm]

Dieses "kann man weiter führen" ist ein verkappter Induktionsbeweis. Aber damit folgt
hier nicht [mm] $a^2 [mm] $a^9 [/mm] < [mm] b^9$. [/mm] So geht es also nicht!

>  und die zweite Frage ist: wie zeige ich denn jetzt die
> andere Inklusion? oder Reicht das so?

Nein.

>  Bzw. Falls es einfacher ist : wie geht das mit
> Induktionsverfahren^^

Na ja, für $n=1$ mußt Du [mm] $a^1
Und jetzt der Induktionsschritt. Hier kannst Du [mm] $a^n daraus [mm] $a^{(n+1)}
Die Umkehrung würde ich mit einem Widerspruchsbeweis führen.
Nimm also [mm] $a^n Hierbei benutze das Ergebnis des ersten Teils.

>  
> zu (b) hab ich leider noch keinen Ansatz... :(

Zeige [mm] $a^{(m+k)}
OK?
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]