www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Untersuchung zweier Kurven
Untersuchung zweier Kurven < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung zweier Kurven: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:45 Sa 01.09.2007
Autor: Diva

Aufgabe:

Gegeben:
K1: [mm] x^{2}-2y^{2}-8x+8y=0 [/mm]
K2: [mm] x^{2}+4y^{2}-8x-16y=0 [/mm]

1.1 Was sind das für Kurven?

1.2. Berechnen Sie die Koordinaten allfälliger Schnittpunkte von K1 und K2.

1.3. Wieviele verschiedene Schnittwinkel besitzen K1 und K2? Begründen Sie ihre Antwort!

1.4. Berechnen Sie einen Schnittwinkel von K1 und K2 ?


Die Begründung zu 1.3. fällt mir besonders schwer!

Danke jetzt schon mal fürs helfen!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Untersuchung zweier Kurven: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Sa 01.09.2007
Autor: angela.h.b.


> Aufgabe:
>  
> Gegeben:
>  K1: [mm]x^{2}-2y^{2}-8x+8y=0[/mm]
>  K2: [mm]x^{2}+4y^{2}-8x-16y=0[/mm]
>  
> 1.1 Was sind das für Kurven?
>  
> 1.2. Berechnen Sie die Koordinaten allfälliger
> Schnittpunkte von K1 und K2.
>  
> 1.3. Wieviele verschiedene Schnittwinkel besitzen K1 und
> K2? Begründen Sie ihre Antwort!
>  
> 1.4. Berechnen Sie einen Schnittwinkel von K1 und K2 ?
>  

Hallo,

[willkommenmr].

Du bist ganz neu hier, lies Dir daher bitte einmal die Forenregeln durch.

Insbesondere darauf, daß eigene Lösungsansätze mitgepostet werden, legen wir großen Wert.

>
> Die Begründung zu 1.3. fällt mir besonders schwer!

Daraus schließe ich, daß Du Dir bereits Gedanken gemacht hast. Was hast Du denn bisher herausbekommen?

Wenn es Probleme gibt, schildere, was Du bisher überlegt hast.

> 1.1 Was sind das für Kurven?

Das sieht doch stark nach Kegelschnitten aus.
Welche Kriterien habt Ihr denn gelernt um zuzuordnen, zu welchem Kegelschnitt eine gegebene Gleichung gehört?

Gruß v. Angela



Bezug
                
Bezug
Untersuchung zweier Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Mo 03.09.2007
Autor: Diva

Oke, also ich hab schon Lösungen erhalten aber ich weiss nicht ob die stimmen!

1.1
K1 ist eine Hyperbel mit M(4/2) [mm] a=\wurzel{8} [/mm] und b=2
K2 ist eine Ellipse mit M(4/2) [mm] a=\wurzel{32} [/mm] und [mm] b=\wurzel{8} [/mm]

1.2
Es gibt also 4 Schnittpunkte die Koordinaten lauten P(0/0), Q(8/0), R(8/4), S(0/4)

1.3
Es gibt meiner Meinung nach 2 verschiedene Winkel [mm] \alpha=71,6° [/mm] oder [mm] \beta=18.4° [/mm]
aber diese Aufgabe macht mir wie schon gesagt besonders Mühe..vorallem die Begründung!
ich vermute es ist wegen der Symmetrien bezuglich M(4/2). ??


Danke !

Bezug
                        
Bezug
Untersuchung zweier Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mo 03.09.2007
Autor: leduart

Hallo
alles, was du geschrieben hast ist richtig,
aber da die 2 Kegelschnitte denselben Mittelpunkt und damit Symmetrielinien haben x=4 und y=2
sind die 4 Punkte symmetrisch zu diesen Achsen, dann kann sich auch nur ein wesentlicher Schnittwinkel ergeben, der andere ist dazu ein Nebenwinkel, also die Ergänzung zu 180°.
mir fällt auf, dass diene 2 Winkel sich zu 90° ergänzen.
Mach doch ne Skizze der 2 Kegelschnitte, kann ungenau sein, hauptsache die Symmetrie stimmt. dann siehst du, dass an allen 4 Pkten dasselbe passiert, weil man sie einschließlich der Tangenten aufeinander spiegeln kann.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]