www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Spiegelung, Hyperebene
Spiegelung, Hyperebene < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung, Hyperebene: Tipp, Ideen Lösungshilfe alles
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 15.01.2013
Autor: anna2013

Aufgabe
Sei die Hyperebene H in [mm] \IR^{n} [/mm] durch H = { [mm] x\in\IR^{n}| [/mm] <n,x> - b=0 } mit ||n||=1 (HESSEsche Normalform) gegeben.
Sei weiter ein Punkt [mm] a\in [/mm] H gegeben. Zeigen Sie, dass für den Bild von [mm] q\in \IR^{n} [/mm] unter Spiegelung [mm] \partial_{H} [/mm] an H gilt:

                  [mm] \partial_{H}(q) [/mm] = q+2*<n,a-q>*n

Halli Hallo,
Hat Jemand einen Tipp oder eine Idee, wie ich diese Aufgabe lösen  soll!!?

Danke im Voraus :-)

        
Bezug
Spiegelung, Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Di 15.01.2013
Autor: Leopold_Gast

Wenn [mm]q'[/mm] mit der angegebenen Formel der Spiegelpunkt von [mm]q[/mm] ist, dann mußt du ja nur zeigen:

1. Die Mitte von [mm]q[/mm] und [mm]q'[/mm], also [mm]m = \frac{1}{2} \left( q+q' \right)[/mm] liegt auf [mm]H[/mm].
2. Die Verbindungsvektor von [mm]q[/mm] nach [mm]q'[/mm], also [mm]q'-q[/mm], steht auf [mm]H[/mm] senkrecht, ist mithin also ein Vielfaches von [mm]n[/mm].

Das zweite kann man an der Formel unmittelbar ablesen, beim ersten muß man ein kleines bißchen rechnen. Um die Übersicht zu behalten, schreibe zur Abkürzung vorübergehend [mm]\lambda = \left \langle \, n \, , \, a-q \, \right \rangle[/mm], denn das ist ein Skalar. Beachte bei der Rechnung auch: [mm]\langle n \, , \, a \rangle = b[/mm] (denn [mm]a[/mm] liegt auf [mm]H[/mm]) und [mm]\langle n \, , \, n \rangle = b[/mm] (denn [mm]n[/mm] ist normiert).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]