www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Punktmaß
Punktmaß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktmaß: Beweis
Status: (Frage) beantwortet Status 
Datum: 16:36 So 09.12.2007
Autor: Lara-Mel

Aufgabe
Sei [mm] \mathcal{A} [/mm] eine beliebige [mm] \sigma\ [/mm] -Algebra in [mm] \Omega. [/mm] Für x [mm] \in\Omega [/mm] wird durch [mm] \alpha[/mm] x (A) ein Maß [mm] \alpha[/mm] x erklärt.


[mm] \alpha[/mm] x [mm] (A)=\begin{cases} 1, & \mbox{wenn} x\in A \\ 0, & \mbox{wenn } x \not\in A \end{cases} [/mm]

Wir müssen beweisen, dass dieses Punktmaß ein Prämaß ist. Sprich wir müssen zeigen, dass [mm] \alpha\ \sigma-additiv [/mm] ist.
Kann uns jemand diesen Beweis erklären/aufzeigen?
Das wäre echt nett, vielen lieben Dank schon mal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Punktmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 So 09.12.2007
Autor: Blech


> Wir müssen beweisen, dass dieses Punktmaß ein Prämaß ist.
> Sprich wir müssen zeigen, dass [mm]\alpha\ \sigma-additiv[/mm] ist.
>  Kann uns jemand diesen Beweis erklären/aufzeigen?

Eigene Ideen und Lösungsansätze posten oder konkrete Frage stellen

Was exakt müßt Ihr denn zeigen? Was müßte denn erfüllt sein, damit [mm] $\alpha_x$ $\sigma$-additiv [/mm] ist?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]