www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Logarithmen/Wurzeln kompl. Fkt
Logarithmen/Wurzeln kompl. Fkt < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen/Wurzeln kompl. Fkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:49 Do 11.05.2006
Autor: madde_dong

Aufgabe
Zeige: Für [mm] h(z):=z^l [/mm] ist [mm] \frac{1}{l}Log(z) [/mm] holomorpher Logarithmus und [mm] \sqrt[k]{z}^l [/mm] holomorphe k-te Wurzel auf [mm] \IC\setminus\IR_{\le 0} [/mm]

Hallo,

ich brauch mal wieder Hilfe. Wenn L(z) Logarithmusfunktion zu h(z) ist, heißt das doch, dass [mm] e^{L(z)}=h(z) [/mm] sein muss, oder?
Aber [mm] e^{\bruch{1}{l}Log(z)}=z^{\bruch{1}{l}} [/mm] - oder?
Bei der Wurzel sieht es eigentlich einfach aus - aber leider gelten ja die üblichen Potenzgesetze aus dem Reellen nicht, also kann ich nicht einfach sagen [mm] (\sqrt[k]{z}^l)^k=((e^{\bruch{1}{l}Log(z)})^l)^k [/mm] = [mm] e^{l Log(z)}=z^l... [/mm]
Ich habe noch einige Aufgaben, die hierauf aufbauen, aber ohne wirklich verstanden zu haben, was ich da mache, kann ich die vergessen...
Bitte helft mir, ich steh aufm Schlauch!

        
Bezug
Logarithmen/Wurzeln kompl. Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 13.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]