Legendre < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:04 Sa 12.11.2005 | Autor: | brain86 |
Hallo, ich hab einige Probleme bei folgender Aufgabe... kann mir jemd. helfen?
Es sei H = [mm] L^2(-1,+1). [/mm] Ich soll zeigen, dass das System
[mm] (P_n(x))_{n \in \mathbb{N}}
[/mm]
der sog. Legendre Polynome
[mm] P_n(x)= \frac{1}{2^nn!} \frac{d^n}{dx^n}(x^2-1)^n
[/mm]
ein orthogonales System in H ist.
(H=Hilbertraum)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:06 Sa 12.11.2005 | Autor: | soulid |
ok, ich denke Junek-geplagte Studenten sollten sich gegenseitig helfen, also:
hier muss bewiesen werden, das [mm] P_n [/mm] auf [-1,1] bezüglich des Skalarproduktes (f,g)= [mm] \integral_{-1}^{1} [/mm] {f(x) g(x) dx} ein Orthogonalsystem bilden.
Als Hinweis kannst hier nehmen, das es reicht für [mm] 0\le [/mm] m < n zu zeigen
[mm] \integral_{-1}^{1} {x^m P_n (x) dx}=0, [/mm] weil sich das Integral aus der part. Integration ergibt.
nun musst du für n [mm] \not= [/mm] m zeigen, dass [mm] \integral_{-1}^{1} {P_m P_n dx}=0 [/mm] ist, weil [mm] P_m [/mm] ein Polynom vom Grad m<n ist, reicht es aber offenbar zu zeigen, daß [mm] \integral_{-1}^{1} {x^m P_n dx}=0 [/mm] für alle 0 [mm] \le [/mm] m< n gilt.
dies ergibt sich durch part. Int., wobei man hier noch ausnutzen kann, dass die Fkt. [mm] (x^2 -1)^n [/mm] in x= [mm] \pm [/mm] 1 jeweils eine Nullstelle n-ter Ordnung hat, d.h. dass dort sämtliche Ableitungen von kleiner Ordnung als n verschwinden, wenn man das jetzt berücksichtigt, ergibt sich mit part. Int.:
[mm] \integral_{-1}^{1} {x^m \bruch{d^m}{dx^n}[(x^2 -1)^n] }=
[/mm]
[mm] =x^m \bruch{d^{n-1}}{dx^{n-1}}[(x^2 -1)^n]|^1 [/mm] -1
- [mm] \integral_{-1}^{1} {x^{m-1} \bruch{d^{m-1}}{dx^{n-1}}[(x^2 -1)^n]}
[/mm]
= [mm] \integral_{-1}^{1} {x^{m-1} \bruch{d^{m-1}}{dx^{n-1}}[(x^2 -1)^n]}
[/mm]
wiederholte Anwendung führt dann zum Abbau der x-ten Potenzen und dann ergibt sich:
[mm] \integral_{-1}^{1} {x^m \bruch{d^n}{dx^n} [(x^2 -1)^n]}
[/mm]
[mm] =(-1)^m \integral_{-1}^{1} [/mm] { [mm] \bruch{d^{n-m}}{dx^{n-m}} [(x^2 -1)^n]}=0
[/mm]
die letzte Gleichung gilt wieder, weil [mm] \bruch{d^{n-m}}{dx^{n-m}} [(x^2 -1)^n] [/mm] eine Stammfunktion zum Integranden ist, die an dem Intervallgrenzen x= [mm] \pm [/mm] 1 verschwindet.
ich hoffe du kannst was damit anfangen
ich hoffe das alles richtig erstellt wurde, hab das erste mal mit dem formeleditor gearbeitet
|
|
|
|