www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Kurven, Int, Bogenlänge
Kurven, Int, Bogenlänge < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurven, Int, Bogenlänge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:59 Sa 12.01.2013
Autor: quasimo

Aufgabe
Wie folgt aus:
Sei [mm] \epsilon> [/mm] 0 vorgegeben.Es existiert ein [mm] \delta_1 [/mm] > 0, sodass
| [mm] \int_a^b [/mm] ||f'(t) || dt - [mm] \sum_{i=1}^k ||f'(t_i)|| (t_i [/mm] - [mm] t_{i-1})| \le \epsilon/2 [/mm]
für jede Unterteilung [mm] a=t_0
Es gibt ein [mm] \delta>0 [/mm] mit [mm] \delta \le \delta_1 [/mm] und folgender Eigenschaft: Hat die Unterteilung eine Feinheit [mm] \le \delta, [/mm] so gilt
für i=1,..k
|   [mm] ||f(t_i) [/mm] - [mm] f(t_{i-1})|| [/mm] - [mm] ||f'(t_i) [/mm] || [mm] (t_i [/mm] - [mm] t_{i-1}) [/mm]  | [mm] \le \frac{t_i - t_{i-1}}{b-a} [/mm]  * [mm] \frac{\epsilon}{2} [/mm]

Dass gilt:
Für jede Unterteilung der Feinheit [mm] \le \delta [/mm]
[mm] |\sum_{i=1}^k ||f(t_i) [/mm] - [mm] f(t_{i-1}) [/mm] - [mm] \int_a^b [/mm] ||f'(t) || dt || [mm] \le \epsilon [/mm]
?

;)
Zum nachlesen: Otto Forster Analysis 2.S.47 oben
LG

        
Bezug
Kurven, Int, Bogenlänge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 So 13.01.2013
Autor: Helbig

Hallo quasimo,

Was ist die Frage?
Wie können wir Dir helfen?

Gruß,
Wolfgang

Bezug
                
Bezug
Kurven, Int, Bogenlänge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 So 13.01.2013
Autor: reverend

Hallo Wolfgang,

> Was ist die Frage?
>  Wie können wir Dir helfen?

In quasimos erstem Beitrag steht doch
"Wie folgt aus" ...
"Dass gilt" ...

Ich kann die Frage zwar auf Anhieb nicht beantworten, aber was eigentlich gefragt ist, ist m.E. recht deutlich.

Grüße
reverend


Bezug
                        
Bezug
Kurven, Int, Bogenlänge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 So 13.01.2013
Autor: Helbig

Hallo reverend,

Du hast recht! Danke für die Lesehilfe. Ich hatte diesen langen Satz schlicht nicht verstanden.

Gruß,
Wolfgang

Bezug
        
Bezug
Kurven, Int, Bogenlänge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 14.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]