www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius Potenzreihe
Konvergenzradius Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 So 18.01.2009
Autor: tonno

Aufgabe
Bestimmen Sie den Konvergenzradius folgender Potenzreihe:
[mm] \sum \bruch1 {4^n}*x^{2n+1}. [/mm]

Sooo..
Ich weiß ja, dass man das ganze umformen könnte zu:
[mm] \sum \bruch1 {4^n}*x^n*x^{2+1/n} [/mm]
was mich persönlich jetzt aber nicht sonderlich weiterbringt.
Meine Frage: kann Ich das ganze mit der Potenzreihe [mm] \sum \bruch1 {4^n}*x^{n} [/mm]
vergleichen und aus dieser dann den Konvergenzradius ermitteln?
Wenn nein, wie soll ich weiter vorgehen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzradius Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 18.01.2009
Autor: kuemmelsche

Hallo tonno,

eigentlich ist der Konvergenzradius ja nur eine Folgerung aus dem Wurzelkriterium:

Wenn du das hier mal anwendest kommst du auf [mm] \limsup_{n\rightarrow\infty}\wurzel[n]{\bruch1 {4^n}\cdot{}x^{2n+1}}=\limsup_{n\rightarrow\infty}\wurzel[n]{\bruch1 {4^n}}*\wurzel[n]{x^{2n}}*\wurzel[n]{x}=\bruch{1}{4}*x^2*1 [/mm]

Das soll nun kleiner als 1 sein. Da brauchst du nur noch die Ungleichung lösen.

Um einen genauen Konvergenzradus anzugeben, kannst du ja vllt geeignet substituieren. Aber so wie mein Weg oben dürfte auch gehen!

lg Kai

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]