www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Wie geh ich da ran?
Status: (Frage) beantwortet Status 
Datum: 16:32 Sa 27.11.2010
Autor: Hulpi

Hallo,

Ich habe komme bei folgender Aufgabe nicht weiter:

Seien a,b beliebige reele Zahlen, und die Folge [mm] (a_n) [/mm] rekursiv definiert durch

[mm] a_1=a, a_2=b, a_n =\left( \bruch{a_n_-1+1_n_-2}{2} \right), n\ge3 [/mm]

Zeigen Die, dass [mm] (a_n) [/mm] konvergiert, und bestimmen Sie den Grenzwert.


Ich hab zuerst einmal überlegt, dass man Konvergenz durch Monotonie zeigen kann, und habe die Relation zwischen [mm] a_n [/mm] und [mm] a_n_+1 [/mm] betrachtet. Aber wenn a und b reelle Zahlen sind, bringt das glaube ich wenig, da sie sowohl nagativ als auch positiv sein können.

Dann habe ich versucht auf den Grenz wert zu schließen. Ich habe die Folgenglieder bis [mm] a_7 [/mm] berechnet aber es kommt nichts deutbares heraus

[mm] a_3= \left( \bruch{b+a}{2} \right) [/mm]

[mm] a_4= \left( \bruch{3b+a}{4} \right) [/mm]

[mm] a_5= \left( \bruch{5b+3a}{8} \right) [/mm]

[mm] a_6= \left( \bruch{11b+5a}{16} \right) [/mm]

[mm] a_7= \left( \bruch{21b+8a}{32} \right) [/mm]

Also bis auf den Nenner kann ich da nichts finden. Ich hab leider auch keine Vermutung wie der Grenzwert aussieht, da ja sowohl Nenner als auch Zähler wachsen.

Vielleicht könnt ihr mir ja weiterhelfen.

lg,

Hulpi


        
Bezug
Konvergenz einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Sa 27.11.2010
Autor: Walde

Hi Hulpi,

> Hallo,
>  
> Ich habe komme bei folgender Aufgabe nicht weiter:
>  
> Seien a,b beliebige reele Zahlen, und die Folge [mm](a_n)[/mm]
> rekursiv definiert durch
>  
> [mm]a_1=a, a_2=b, a_n =\left( \bruch{a_n_-1+1_n_-2}{2} \right), n\ge3[/mm]

  
du müsstest nochmal bitte richtig hinschreiben, wie deine Folge aussehen soll. Das was du da hingeschreiben hast, scheint mir keinen Sinn zu machen.

LG walde

Bezug
        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Sa 27.11.2010
Autor: reverend

Hallo Hulpi,

na, das ist doch schon ein guter Weg.

> Seien a,b beliebige reele Zahlen, und die Folge [mm](a_n)[/mm]
> rekursiv definiert durch
>  
> [mm]a_1=a, a_2=b, a_n =\left( \bruch{a_{n-1}+a_{n-2}}{2} \right), n\ge3[/mm]

Ich hab mal ein bisschen drin herum korrigiert. Sollte das so aussehen?
Indizes mit mehr als einem Zeichen gehören in geschweifte Klammern. Dann werden sie korrekt angezeigt.

> Zeigen Sie, dass [mm](a_n)[/mm] konvergiert, und bestimmen Sie den
> Grenzwert.
>  
>
> Ich hab zuerst einmal überlegt, dass man Konvergenz durch
> Monotonie zeigen kann, und habe die Relation zwischen [mm]a_n[/mm]
> und [mm]a_n_+1[/mm] betrachtet. Aber wenn a und b reelle Zahlen
> sind, bringt das glaube ich wenig, da sie sowohl nagativ
> als auch positiv sein können.

Stimmt. Aber...

> Dann habe ich versucht auf den Grenz wert zu schließen.
> Ich habe die Folgenglieder bis [mm]a_7[/mm] berechnet aber es kommt
> nichts deutbares heraus
>  
> [mm]a_3= \left( \bruch{b+a}{2} \right)[/mm]
>  
> [mm]a_4= \left( \bruch{3b+a}{4} \right)[/mm]
>  
> [mm]a_5= \left( \bruch{5b+3a}{8} \right)[/mm]
>  
> [mm]a_6= \left( \bruch{11b+5a}{16} \right)[/mm]
>  
> [mm]a_7= \left( \bruch{21b+8a}{32} \right)[/mm]
>  
> Also bis auf den Nenner kann ich da nichts finden. Ich hab
> leider auch keine Vermutung wie der Grenzwert aussieht, da
> ja sowohl Nenner als auch Zähler wachsen.

Naja, man sähe mehr, wenn [mm] a_7 [/mm] stimmen würde. Tuts aber nicht.

Du könntest mal die Koeffizienten vor b und a betrachten und Deine Folge so aufspalten:

[mm] a_n=\alpha_n*a+\beta_n*b [/mm]

Die beiden Folgen [mm] (\alpha_n) [/mm] und [mm] (\beta_n) [/mm] sind nicht schwer zu finden. Beide sind konvergent und haben also einen Grenzwert.

Ein Tipp dazu: Führe für [mm] \alpha_n [/mm] und [mm] \beta_n [/mm] die rekursive Definition aus zwei vorhergehenden Folgengliedern auf eine solche mit nur einem vorhergehenden Folgenglied zurück. Ab da ist alles einfach.

Grüße
reverend


Bezug
                
Bezug
Konvergenz einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:00 Sa 27.11.2010
Autor: Hulpi

Hallo reverend,

also erst mal danke, dass du meine Aufgabe korrigiert hast =), genau so aolls aussehen. Habs zwar in der Vorschau angeschaut aber wenn man die Aufgabe schon zum 10. mal sieht interpretiert man da leicht was rein.

Wie dem auch sei. Ich hab [mm] a_7 [/mm] nochmal gerechnet und den Fehler gefunden.

$ [mm] a_7= \left( \bruch{21b+11a}{32} \right) [/mm] $

Also hängen a und b zusammen, wobei b immer einen Faktor "Vorsprung" zu haben scheint.

Die Faktoren verhalten sich soweit ich das erschließen kann immer so:

für b:

von [mm] a_3 [/mm] zu [mm] a_4: [/mm] $ b*2+1 $
von [mm] a_4 [/mm] zu [mm] a_5: [/mm] $ b*2-1 $
von [mm] a_5 [/mm] zu [mm] a_6: [/mm] $ b*2+1 $
von [mm] a_6 [/mm] zu [mm] a_7: [/mm] $ b*2-1 $
dann müsste b für [mm] a_8 [/mm] so zu berechnen sein.
von [mm] a_7 [/mm] zu [mm] a_8: [/mm] $ b*2+1 $

Für a müsste das ganze analog funktionieren.

Ich bin mir nicht sicher, ob du das mit dem Tipp gemeint hast.
Geht es darum hier eine explizite Folge zu erschaffenum den Grenzwert abzulesen?
Wie mach ich das ganze mit der Konvergenz, also wenn ich den Grenzwert habe kann, ist es dann mit dem Epsilon Test zu zeigen oder wie geht man das an. Ich hab die ganze Geschichte mit Chauchy & Co da noch nicht ganz verstanden =S.

Grüße,

Hulpi

Bezug
        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Sa 27.11.2010
Autor: ullim

Hi,

alternativ kannst Du mit Mitteln der Differenzengleichungen an das Problem gehen. Zu lösen ist in Deinem Fall die Differenzengleichung

[mm] a_{n}-\br{1}{2}a_{n-1}-\br{1}{2}a_{n-1}=0 [/mm]   mit [mm] a_1=a [/mm] und [mm] a_2=b [/mm]

Als Lösungsansatz für [mm] a_n [/mm] wählt man die Form [mm] \lambda^n [/mm] mit noch unbestimmten [mm] \lambda [/mm]

Durch einsetzen und anschließende Division durch [mm] \lambda^{n-2} [/mm] erhält man die Gleichung

[mm] \lambda^2-\br{1}{2}\lambda-\br{1}{2}=0 [/mm] mit den Lösungen [mm] \lambda_1=1 [/mm] und [mm] \lambda_2=-\br{1}{2} [/mm]

Daraus ergibt sich durch Linearkombination (ähnlich wie bei Differentialgleichungen) die allgemeine Lösung zu

[mm] a_n=A*1^n+B*\left(-\br{1}{2}\right)^n [/mm]

Es muss gelten [mm] a_1=a [/mm] und [mm] a_2=b [/mm] Damit ergeben sich A und B wie folgt

[mm] A=\br{1}{3}a+\br{2}{3}b [/mm]

[mm] B=-\br{4}{3}a+\br{4}{3}b [/mm]

Die Lösung lautet also

[mm] a_n=\left[\br{1}{3}a+\br{2}{3}b\right]+\left[-\br{4}{3}a+\br{4}{3}b\right]\left(-\br{1}{2}\right)^n [/mm]

Der zweite Summand konvergiert  gegen 0 für n gegen [mm] \infty [/mm]

Daraus folgt der Grenzwert ergibt sich zu

[mm] \limes_{n\rightarrow\infty}a_n=\br{1}{3}a+\br{2}{3}b [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]