Gauß - Transformation zulässig < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hi,
ich hab ne Frage da ich mir nicht sicher bin, ob ich diese "Operation" durchführen kann.
[mm] \pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 2a-1 & 0}
[/mm]
Hier würde ich gerne die Zeile 4 durch (2a-1) teilen. Dann käme ich auf folgendes:
[mm] \pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 1 & 0}
[/mm]
Ist das erlaubt?
Danke
Gruß Thomas
|
|
|
|
Hallo KnockDown!
> ich hab ne Frage da ich mir nicht sicher bin, ob ich diese
> "Operation" durchführen kann.
>
> [mm]\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 2a-1 & 0}[/mm]
>
> Hier würde ich gerne die Zeile 4 durch (2a-1) teilen. Dann
> käme ich auf folgendes:
>
> [mm]\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 1 & 0}[/mm]
>
>
> Ist das erlaubt?
Wenn [mm] (2a-1)\not=0 [/mm] ist, darfst du dadurch teilen. Wieso nicht? Du darfst jede Zeile mit einer beliebigen [mm] Zahl\not=0 [/mm] multiplizieren.
Viele Grüße
Bastiane
|
|
|
|
|
HI Bastiane
Die Variable a steht aber nicht fest, deshalb kann ich nicht sagen ob sie ungleich 0 ist.
Ist es dann noch zulässig?
Gruß Thomas
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:44 Mi 14.02.2007 | Autor: | Walde |
Hi Thomas,
im Zweifelsfall musst du eine Fallunterscheidung durchführen (1.Fall [mm] 2a-1\not=0) [/mm] und extra betrachten was passiert, falls [mm] $2a-1=0(\gdw a=\bruch{1}{2})$ [/mm] ist (2.Fall).
L G walde
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:19 Mi 14.02.2007 | Autor: | leduart |
Hallo
Kommt drauf an, was du mit der Matrix willst.
der Rang, ddie Eigenvektoren aendern sich nicht, die Determinante schon, genau um den Faktor.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:20 Mi 14.02.2007 | Autor: | KnockDown |
Hi,
ich habe Probleme eine Matrix nach Gauß umzuformen. Ich habe Sie bis zum Ende umgeformt und ich komme dann auf einen Rang(A)=3. Was aber aus 2 Gründen nicht sein kann: 1. Da ich für die [mm] $Det(A)\not=0$ [/mm] d. h. Sie ist invertierbar, da die Det(A) ungleich 0 ist muss die Matrix vollen Rang haben also Rang(A)=4. Es kann auch deshalb schon nicht sein, da Derive auch einen Rang von 4 herausbekommt.
Ich schreibe Sie mal hin, ich finde meinen Fehler nicht ich bin alles schon paar mal durchgegangen!
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & a & a-1 & 0 \\ 0 & a-1 & a & 0 \\ a & a+1 & 0 & 0}$ [/mm] Zeile 4 - a*Zeile 1
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & a & a-1 & 0 \\ 0 & a-1 & a & 0 \\ 0 & a+1 & -a^2-a & -a^2}$ [/mm] Zeile 3 - Zeile 2
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & a & a-1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & a+1 & -a^2-a & -a^2}$ [/mm] Zeile 2 + a*Zeile 3
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 0 & 2a-1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & a+1 & -a^2-a & -a^2}$ [/mm] Zeile 4 + a*Zeile 3
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 0 & 2a-1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -a^2 & -a^2}$ [/mm] Zeile 3*(-1)
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 0 & 2a-1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -a^2 & -a^2}$ [/mm] Vertausche Zeilen
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -a^2 & -a^2 \\ 0 & 0 & 2a-1 & 0}$ [/mm] Zeile 3 - Zeile 2
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 2a-1 & 0}$ [/mm] Zeile 4 : (2a-1)
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 1 & 0}$ [/mm] Zeile 3 + [mm] a^2*Zeile4
[/mm]
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0}$ [/mm] Zeile 3 - Zeile 4
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0}$
[/mm]
Ich muss irgendwo einen Fehler haben. Aber wo? Ich habe auch die Umformungen 2 mal unabhängig voneinander gerechnet.
Kann es sein, dass ich irgendwelche Umformungsschritte mache die ich nicht machen darf?
Danke für die Hilfe!
Gruß Thomas
|
|
|
|
|
Hallo KnockDown!
> Ich schreibe Sie mal hin, ich finde meinen Fehler nicht ich
> bin alles schon paar mal durchgegangen!
Oh, da hast du dir aber vieeel Arbeit gemacht, die ganzen Matrizen hier aufzuschreiben.
> [mm]\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 1 & 0}[/mm]
> Zeile 3 + [mm]a^2*Zeile4[/mm]
>
> [mm]\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0}[/mm]
Ich habe nur recht schnell über deine Umformungen geguckt, dabei aber keinen Fehler gefunden - außer hier: Der letzte Eintrag in der 3. Zeile muss doch [mm] -a^2 [/mm] bleiben. In der vierten Zeile steht dort doch eine 0, die kannst du so oft addieren, wie du willst, da bleibt [mm] -a^2 [/mm] stehen. Kommt es dann hin?
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:26 Mi 14.02.2007 | Autor: | KnockDown |
Hi Bastiane,
vielen vielen Dank :) Jetzt bin ich zum Ende gekommen!
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & a & a-1 & 0 \\ 0 & a-1 & a & 0 \\ a & a+1 & 0 & 0}$ [/mm] Zeile 4 - a*Zeile 1
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & a & a-1 & 0 \\ 0 & a-1 & a & 0 \\ 0 & a+1 & -a^2-a & -a^2}$ [/mm] Zeile 3 - Zeile 2
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & a & a-1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & a+1 & -a^2-a & -a^2}$ [/mm] Zeile 2 + a*Zeile 3
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 0 & 2a-1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & a+1 & -a^2-a & -a^2}$ [/mm] Zeile 4 + a*Zeile 3
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 0 & 2a-1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -a^2 & -a^2}$ [/mm] Zeile 3*(-1)
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 0 & 2a-1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -a^2 & -a^2}$ [/mm] Vertausche Zeilen
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -a^2 & -a^2 \\ 0 & 0 & 2a-1 & 0}$ [/mm] Zeile 3 - Zeile 2
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 2a-1 & 0}$ [/mm] Zeile 4 : (2a-1)
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1-a^2 & -a^2 \\ 0 & 0 & 1 & 0}$ [/mm] Zeile 3 + [mm] a^2*Zeile4
[/mm]
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -a^2 \\ 0 & 0 & 1 & 0}$ [/mm] Zeile 3 und 4 vertauschen UND im Anschluss Zeile 4 [mm] $:(-a^2)$ [/mm] teilen
[mm] $\pmat{ 1 & 0 & a+1 & a \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1}$ [/mm]
Ran(A)=4
Gruß Thomas
|
|
|
|