www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Faltung von Dichten
Faltung von Dichten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung von Dichten: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 17:34 So 16.01.2011
Autor: Druss

Die Faltung zweier Dichten ist wie folgt definiert:

[mm] F_Z [/mm] (z) = [mm] P(X+Y\le [/mm] z)

= [mm] \int\int_A [/mm] f(u,v) du dv wobei [mm] A=\{(x,y):x+y\le z\} [/mm]
= [mm] \int\limits_{u=-\infty}^\infty \int\limits_{v=-\infty}^{z-u} [/mm] f(u,v) du dv

[mm] \rightarrow [/mm] Frage 1: wieso kann [mm] u\in\mathbb{R} [/mm] sein. Dann ist es doch schon möglich, dass u>z ist ??
[mm] \rightarrow [/mm] Antwort 1: v muss eben keinen Positiven Wert annehmen. Deswegen ist [mm] x+y\le [/mm] z kein Problem wenn u>z ist.

Subst.: x=u , y=v+u

= [mm] \int\limits_{x=-\infty}^\infty \int\limits_{y=-\infty}^{z} [/mm] f(x,y-x) dy dx

[mm] \rightarrow [/mm] Frage 2: wie komme ich drauf, dass meine obere Integrationsgrenzen von y nun z ist? Ich sehe nicht wie ich das durch die Substitution hinbekomme.

= [mm] \int\limits_{y=-\infty}^{z} \int\limits_{x=-\infty}^\infty [/mm] f(x,y-x) dx dy


Somit ist

= [mm] \int\limits_{x=-\infty}^\infty [/mm]  f(x,z-x) dx die zugehörige Dichtefunktion von [mm] f_Z [/mm] ( z) von Z.

[mm] \rightarrow [/mm] Frage 3: verstehe nicht wie ich auf dieses Endergebnis komme...

vielen Dank für Hilfe!

mfg


        
Bezug
Faltung von Dichten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Mo 17.01.2011
Autor: schachuzipus

Hallo Druss,

> Die Faltung zweier Dichten ist wie folgt definiert:
>
> [mm]F_Z[/mm] (z) = [mm]P(X+Y\le[/mm] z)
>
> = [mm]\int\int_A[/mm] f(u,v) du dv wobei [mm]A=\{(x,y):x+y\le z\}[/mm]

> =
> [mm]\int\limits_{u=-\infty}^\infty \int\limits_{v=-\infty}^{z-u}[/mm] f(u,v) du dv
>
> [mm]\rightarrow[/mm] Frage 1: wieso kann [mm]u\in\mathbb{R}[/mm] sein. Dann
> ist es doch schon möglich, dass u>z ist ??
> [mm]\rightarrow[/mm] Antwort 1: v muss eben keinen Positiven Wert
> annehmen. Deswegen ist [mm]x+y\le[/mm] z kein Problem wenn u>z ist. [ok]
>
> Subst.: x=u , y=v+u
>
> = [mm]\int\limits_{x=-\infty}^\infty \int\limits_{y=-\infty}^{z}[/mm]  f(x,y-x) dy dx
>
> [mm]\rightarrow[/mm] Frage 2: wie komme ich drauf, dass meine obere
> Integrationsgrenzen von y nun z ist? Ich sehe nicht wie ich
> das durch die Substitution hinbekomme.

Alte obere Grenze: [mm]v=z-u[/mm], also [mm]\red{v+u=z}[/mm]

Mit der Substitution [mm]y=v+u[/mm] ist das aber gerade [mm]\red{z=v+u=y}[/mm], also neue obere Grenze $y=z$

>
> = [mm]\int\limits_{y=-\infty}^{z} \int\limits_{x=-\infty}^\infty[/mm] f(x,y-x) dx dy
>
>
> Somit ist
>
> = [mm]\int\limits_{x=-\infty}^\infty[/mm] f(x,z-x) dx die
> zugehörige Dichtefunktion von [mm]f_Z[/mm] ( z) von Z.
>
> [mm]\rightarrow[/mm] Frage 3: verstehe nicht wie ich auf dieses
> Endergebnis komme...

Wie hängen denn Dichtefunktion und Verteilungsfunktion zusammen??

Kläre das, dann ist auch deine Frage geklärt ;-)

>
> vielen Dank für Hilfe!
>
> mfg
>


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]