www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung 1.Ordn.
Differentialgleichung 1.Ordn. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung 1.Ordn.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:18 Mo 04.06.2012
Autor: ggT

Aufgabe
Bestimme die Lösungsgesamtheit der Differentialgleichung

$y' = xy + x$ auf $U = [mm] \IR^{2}$ [/mm]

und skizziere die Lösungsgesamtheit.

Wieder eine Differentialgleichung 1.Ordnung, müsste diesmal linear sein.
Ich weiß immer nicht, ob ich jetzt noch was beachten muss, da diesmal $U = [mm] \IR^{2}$ [/mm] und diesmal nicht ein Kreuzprodukt aus den reellen Zahlen und einer Menge ist.

Hätte das nun auch wieder mit Trennung der Variablen folgendermaßen versucht:

$ y' = xy + x $

[mm] $\bruch{dy}{dx} [/mm] = (y+1)*x$


Trennung der Variablen:

[mm] $\bruch{dy}{y+1} [/mm] = x dx


Integration ergibt:

[mm] \integral_{}^{}{(y+1)^{-1}dy} [/mm] = [mm] \integral_{}^{}{x dx} [/mm]


Aber kommt man von hier aus nun weiter, oder ist das alles quatsch mit Trennung der Variablen und man muss das wieder mit Substitution lösen?

        
Bezug
Differentialgleichung 1.Ordn.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 04.06.2012
Autor: fred97


> Bestimme die Lösungsgesamtheit der Differentialgleichung
>  
> [mm]y' = xy + x[/mm] auf [mm]U = \IR^{2}[/mm]
>  
> und skizziere die Lösungsgesamtheit.
>  Wieder eine Differentialgleichung 1.Ordnung, müsste
> diesmal linear sein.
>  Ich weiß immer nicht, ob ich jetzt noch was beachten
> muss, da diesmal [mm]U = \IR^{2}[/mm] und diesmal nicht ein
> Kreuzprodukt aus den reellen Zahlen und einer Menge ist.

Doch: U= [mm] \IR \times \IR [/mm]

>  
> Hätte das nun auch wieder mit Trennung der Variablen
> folgendermaßen versucht:
>  
> [mm]y' = xy + x[/mm]
>  
> [mm]\bruch{dy}{dx} = (y+1)*x[/mm]
>  
>
> Trennung der Variablen:
>  
> [mm]$\bruch{dy}{y+1}[/mm] = x dx
>  
>
> Integration ergibt:
>  
> [mm]\integral_{}^{}{(y+1)^{-1}dy}[/mm] = [mm]\integral_{}^{}{x dx}[/mm]

Nicht ganz:

[mm]\integral_{}^{}{(y+1)^{-1}dy}[/mm] = [mm]\integral_{}^{}{x dx}[/mm]+c

>  
>
> Aber kommt man von hier aus nun weiter

Ja, berechne die Integrale

> , oder ist das alles
> quatsch mit Trennung der Variablen

Nein.

>  und man muss das wieder
> mit Substitution lösen?

Nein.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]